
EUROPEAN SOUTHERN OBSERVATORY
Organisation Européenne pour des Recherches Astronomiques dansl’Hémisphère Austral

Europäische Organisation für astronomische Forschung in der südlichen Hemisphäre

VERY LARGE TELESCOPE

Common Pipeline Library
User Manual

VLT–MAN–ESO–19500–2720

Issue 5.0.0

Date 2009–04–28

Prepared: CPL Project Team 2009-04-28.
Name Date Signature

Approved: P. Ballester.
Name Date Signature

Released: M. Peron.
Name Date Signature

This page was intentionally left blank

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 3 of 99

Change record

Issue/Rev. Date Section/Parag. affected Reason/Initiation/Documents/Remarks

1.0 15/12/2003 All First version
1.0.1 24/08/2003 All Corrected errors in cpl_plugin interface examples
2.0.0 01/04/2005 All Major changes for CPL 2.0 release
2.0.1 14/04/2005 All Remove obsolete references to CPL 1.0
2.1.0 20/07/2005 All Update for CPL 2.1
3.0.0 24/08/2006 All Update for CPL 3.0
4.0.0 27/08/2007 All Update for CPL 4.0
4.1.0 28/03/2008 All Update for CPL 4.1
5.0.0 28/04/2009 All Update for CPL 5.0

This page was intentionally left blank

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 5 of 99

Contents

1 Introduction 9

1.1 TheCommon Pipeline Library. 9

1.2 Future work 9

1.3 Acknowledgements 9

1.4 Abbreviations and acronyms 10

2 Installation 11

2.1 Supported platforms 11

2.2 Building the CPL from the source distribution 11

2.2.1 Requirements .. 11

2.2.2 Downloading the CPL source distribution 12

2.2.3 Compiling theCommon Pipeline Library . 12

3 Software development with the CPL 15

3.1 Getting started 15

3.2 Using theCommon Pipeline Libraryin your project . 15

3.3 Linking your application with the CPL 16

3.4 Writing a simpleCommon Pipeline Libraryapplication . 17

3.5 How to implement a Pluggable Data Reduction Module 18

3.6 A specificCommon Pipeline Libraryapplication : the VLT instrument pipeline 23

4 CPL general design features 24

4.1 OO approach 24

4.2 Portability 24

4.3 The extended memory model 25

4.3.1 Advantages of using the extended memory functions 25

4.3.2 Drawbacks of using the extended memory functions 25

4.3.3 Using the extended memory .. 26

4.4 Error handling 26

4.5 Library stability 26

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 6 of 99

4.6 Code conventions 26

4.6.1 Objects .27

4.6.2 Methods .27

4.6.3 Functions .. 27

4.7 Naming Conventions 27

4.7.1 Meaning of Fields .. 28

4.7.2 Lexicon .. 29

5 The CPL components 33

5.1 Component libraries 33

5.2 Core objects inlibcplcore . 33

5.2.1 Images .33

5.2.2 Masks .. 38

5.2.3 List of images .. 39

5.2.4 Tables .. 40

5.2.5 Statistics . 56

5.2.6 Vectors .. 56

5.2.7 Bivectors .. . 57

5.2.8 Polynomials . 57

5.2.9 Matrices .. 58

5.2.10 Messaging and logging 61

5.2.11 Error handling 63

5.2.12 Properties 70

5.2.13 Property lists .. . 71

5.2.14 Plotting .72

5.3 The CPL interfaces inlibcplui . 74

5.3.1 Frames .74

5.3.2 Frameset .. 75

5.3.3 Parameters .. 76

5.4 Standard data reduction algorithms inlibcpldrs . 77

5.4.1 Apertures .. . 77

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 7 of 99

5.4.2 Detectors .. 78

5.4.3 Geometrical transformations 79

5.4.4 Photometry .79

5.4.5 Nonlinear fitting .79

5.4.6 World Coordinate System .. . 80

5.5 ESO/DFS specific routines inlibcpldfs . 82

Bibliography 83

A The PDRM source code 84

B Comment conventions 87

C Naming conventions 91

D Function renaming and API changes from CPL 4.0 to CPL 5.0 97

D.1 New functions in CPL 5.0 97

D.2 API changes in CPL 5.0 98

D.3 Other API changes in CPL 5.0 98

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 8 of 99

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 9 of 99

1 Introduction

1.1 TheCommon Pipeline Library

TheCommon Pipeline Library(CPL) consists of a set of C libraries, which have been developed to standardise
the way VLT instrument pipelines are built, to shorten their development cycle and to ease their maintenance.
The Common Pipeline Librarywas not designed as a general purpose image processing library, butrather to
address two primary requirements. The first of these was to provide an interface to the VLT pipeline runtime-
environment. The second was to provide a software kit of medium-level tools, which allows astronomical
data-reduction tasks to be built rapidly.

TheCommon Pipeline Libraryprovides:

• Many useful data types (images, tables, matrix, vectors, ...) and their associated methods (libcplcore).

• Support for dynamic loading of recipe modules and standardised applicationinterfaces for pipeline recipes
(libcplui).

• Image and signal processing capabilities and standard implementations of commonly used data reduction
tasks (libcpldrs).

• DFS specific functionalities to insure the DFS compliance of the pipelines (libcpldfs).

Despite the bias towards instrument pipeline development, the library core provides a variety of general-purpose
image and signal-processing functions. Thus, it also serves well as a basis for any generic data-handling pack-
age.

1.2 Future work

Standardised versions of the most common calibration steps and removal of instrument signature are now of-
fered. Of course the data reduction system developers may still define any specific procedure to support bias
subtraction, flat fielding, wavelength calibration, instrument response linearisation, cosmic ray removal, object
detection, bad pixel determination, etc., as needed for a particular instrument.

More sophisticated methods for signal processing will also be added to anyCPL basic component as they will
be needed in the development of future pipelines.

Major areas of growth foreseen for future releases are general astronomical utility functions enabling spherical
coordinate transformations, date and time conversions, precession, atmospheric extinction determination and
other common operations in astronomy.

1.3 Acknowledgements

In June 2001, N. Devillard and R. Palsa first proposed a common software library in order to ease and acceler-
ate the development efforts for the different VLT instrument pipelines. This software library, calledCommon
Pipeline Library (CPL), would essentially be built up from already existing code. In particular, theEclipse

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 10 of 99

library (used for ISAAC and NACO pipelines) and concepts of the VIMOSdata reduction software would be
the main pillars of the CPL software.

In September 2001, M. Peron formed a CPL project team, consisting of N. Devillard and Y. Jung (working
for ISAAC, NAOS/CONICA), together with R. Palsa and C. Izzo (workingfor VIMOS, FORS1/2), as well as
P. Ballester and C. Sabet from the VLTI pipeline project. K. Banse served as mediator and chairman.
In the past, also M. Kiesgen, and D.J.-McKay made major contributions to CPL.
Currently, the CPL project team consists of: K. Banse, S. Castro, C. Izzo, L. deBilbao, L. Lundin.

A preliminary version of the CPL was released in May 2002. Building on this basic version, the first official
release of the CPL was made available to the public by ESO in December 2003.

1.4 Abbreviations and acronyms

CONICA COudé Near Infrared Camera Array
CPL Common Pipeline Library
DHS Data Handling Server
DFS Data Flow System
DO Data Organiser
DRS Data Reduction System
ESO European Southern Observatory
ESO–MIDAS ESO’s Munich Image Data Analysis System
FORS FOcal Reducer/low dispersion Spectrograph
FTP File Transfer Protocol
ISAAC Infrared Spectrometer And Array Camera
GNU GNU’s Not Unix!
LSS Long Slit Spectroscopy
MOS Multi Object Spectroscopy
NAOS Nasmyth Adaptive Optics System
PDRM Pluggable Data Reduction Module
RB Reduction Block
RBS Reduction Block Scheduler
SDK Software Development Kit
UT Unit Telescope
VIMOS VIsible Multi-Object Spectrograph
VLT Very Large Telescope
VLTI Very Large Telescope Interferometer

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 11 of 99

2 Installation

This chapter gives generic instructions on how to obtain, build and install theCommon Pipeline Library. Even
if this chapter is kept as up-to-date as much as possible, it may not be fully applicable to a particular release.
This might especially happen for patch releases. You are therefore advised to read the installation instructions
delivered with theCommon Pipeline Librarydistribution. These release-specific instructions can be found in
the fileREADME located in the top-level directory of the unpackedCommon Pipeline Librarysource tree. The
supported platforms are listed in Section 2.1. It is recommended that you readthrough Section 2.2.3 before you
start the installation procedure.

2.1 Supported platforms

The utilisation of the GNU build tools should allow you to build and install theCommon Pipeline Libraryon a
variety of UNIX platforms. The goal is to support the following target platforms:

• HP-UX 11.00

• Sun Solaris 8

• Linux (glibc 2.1 or later)

• Mac OSX 10.0 or later

• BSD compatibles

However, only the VLT target platforms and operating systems, Scientific Linux 5.x and Linux (glibc 2.1 or
later), are officially supported, right now.

2.2 Building the CPL from the source distribution

This section shows how to obtain, build and install theCommon Pipeline Libraryon your system from the
official source distribution.

2.2.1 Requirements

To compile and install theCommon Pipeline Libraryyou need:

• An ANSI/ISO-C99 compliant C compiler (preferablygcc 3.2 or later)

• The GNUgzip data compression program

• A version of thetar file-archiving program

• The GNUmake utility

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 12 of 99

• If you want to usegasgano, also the Java SDK (Software Develpment Kit) from Sun

To actually use theCommon Pipeline Libraryyou need:

• TheCFITSIO FITS utility library from NASA

CPL usesCFITSIO as FITS I/O library.
The CPL library is synchronized with the ESO VLT-software which uses CFITSIO rel. 3.0.9, right now. Thus,
CPL 5.0 also uses CFITSIO 3.0.9, and is tested right now for this specific CFITSIO version. Support will be for
the CFITSIO versions 3.x.y in the future. Whenever, ESO’s VLT software project upgrades to a newer version
of CFITSIO, then CPL will follow.

2.2.2 Downloading the CPL source distribution

You may always obtain the latest release of theCommon Pipeline Librarysources from the ESO CPL web page.
To download the source distribution, point your browser to:

http://www.eso.org/sci/data-processing/software/cpl/donwload.html

The CPL sources are distributed as a gzipped tar archive named in the formatcpl-X.Y.Z.tar.gz, where
X andY are the major and minor release numbers, andZ denotes the patch level (which might be missing if no
patch has been released).

In addition, sinceCommon Pipeline Librarydepends on release 3.0.9 of theCFITSIO library (see section 2.2.1),
this specific version ofCFITSIO is also available from the official ESO-CPL download page as specified above.

2.2.3 Compiling theCommon Pipeline Library

It is recommended that you completely read through this section before you actually begin with the installation.

1. First, if an appropriate version ofCFITSIO (c.f. section 2.2.1) does not already exist on your system,
compile and install theCFITSIO library. For detailed instructions on how to install theCFITSIO library,
please, refer to theCFITSIO documentation.

Typically, for an installation into the default directory/usr/local (you might needroot privileges to
do this) you must execute:

$ zcat -d CFITSIO.tar.gz | tar -xvf -
$ cd cfitsio
$./configure --prefix=/usr/local
$ make
$ make shared
$ make install

The following assumes thatCFITSIO is installed in/usr/local.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 13 of 99

2. Unpack the CPL sources in a directory of your choice using

$ zcat -d cpl-X.Y.Z.tar.gz | tar -xvf -

at the system prompt. This will create a directory calledcpl-X.Y.Z containing the source tree.

3. Before running the configuration script it is recommended that you addsome variables to your environ-
ment.

The environment variableCFITSIODIR tells the configuration script where theCFITSIO libraries and
header files can be found. Actually, this variable needs to be defined onlyif CFITSIO has not been
installed in the default directory/usr/local or any of the system’s standard directories. The environ-
ment variableCPLDIR determines the installation prefix for the CPL. The default is/usr/local and
usually the installation must be done asroot.

It is not mandatory to have the variablesCPLDIR andCFITSIODIR defined since you may pass the
installation prefixes as command line options to the configuration script (c.f. 4). But packages depending
on the CPL might look for these definitions at build time (see Section 3.3 for instance), so that it is simply
convenient to have them defined as part of your environment. In the following, it is assumed that both
CPLDIR andCFITSIODIR are set correctly.

Please note that assigning the default installation prefixes to the environmentvariables in the example
below is just for demonstration purposes. In principle, they could be set toany directory for which you
have write access with one exception: it is not recommended that you install the CPL into its own source
tree.

If your shell is theBourneor a compatible shell (i.e. sh, bash, ksh, zsh, etc.) you should add:

CFITSIODIR=/usr/local
CPLDIR=/usr/local
LD_LIBRARY_PATH=$CPLDIR/lib:$CFITSIODIR/lib:$LD_LIBRARY_PATH
export CPLDIR CFITSIODIR LD_LIBRARY_PATH

to the file.profile (or.bashrc if you are usingbash). If you are using the C-shell (i.e. cshor tcsh)
the commands above translate into:

setenv CFITSIODIR /usr/local
setenv CPLDIR /usr/local
setenv LD_LIBRARY_PATH \

$CPLDIR/lib:$CFITSIODIR/lib:$LD_LIBRARY_PATH

and should be added to the C-shell startup file.cshrc.

The variableLD_LIBRARY_PATH is the dynamic linker’s search path and allows an application to find
the CPL libraries at run-time if they are not installed in one of the system’s standard directories. Please
note that the name of this variable may depend on the platform on which you areworking. The name
LD_LIBRARY_PATH is used on Linux and Solaris platforms whereas on an HP-UX system it is called
SHLIBS_PATH. For details please refer to the documentation of your system; the dynamic linker’s man-
ual pages are a good starting point.

To activate these settings you may either logout and login again, source the startup script manually. Alter-
natively, you may use the command line options of the configuration script, as described in step 4. Note

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 14 of 99

that if you are going to install dependent packages you might have to repeat these command line options
for each of these packages, if the variablesCPLDIR andCFITSIODIR are not set.

4. To compile and install the CPL on your system run the following sequence of commands:

$ cd cpl-X.Y.Z
$./configure --prefix=/usr/local
$ make
$ make install
$ make install-html

Before installing the CPL on your system you may want to verify that the CPL was built correctly. This
can be done by running the commandmake check before executingmake install. This will build
and run some test cases and it will output a short summary of the test resultsat the end.

The last command,make install-html, is optional and installs theCommon Pipeline LibraryOn-
Line Reference Manual into the directory$CPLDIR/share/doc/cpl/html. The on-line documen-
tation forlibcext, the C Extension Library, which is used inside CPL, can be found in
$CPLDIR/share/doc/cext/html.

Theconfigure script provides a variety of command-line options to customise the CPL installation.
The list of available options can be obtained by running./configure --help in the top-level di-
rectory of the source tree. Using a command line option always takes precedence over any previously
set environment variable. In particular, the variablesCPLDIR andCFITSIODIR are overridden by the
options--prefix and--with-CFITSIO respectively.

At this point, the installation of theCommon Pipeline Libraryis complete and you can start using it. If the
installation did complete successfully, you may also safely delete the whole source tree to save disk space, as it
is no longer needed.

If the CPL has been installed into one of the system’s standard directories, the dynamic linker search path does
not need to be modified, as these directories are searched by default. But on Linux systems, it might be necessary
to update the dynamic loader’s cache by executing the commandldconfig asroot at the system prompt.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 15 of 99

3 Software development with the CPL

This section gives a short overview on how theCommon Pipeline Librarycan be used to develop your own
software, either simple applications, just using the facilities provided by the CPL libraries, orPluggable Data
Reduction Modules(PDRM), to be used as part of one of ESO’s VLT instrument pipelines.

3.1 Getting started

In this document we assume that you know the ANSI C programming language,your C compiler and that you
are also familiar with the GNUmakeutility.

Before you start coding it is recommended that you, at least, skim throughthis manual to get a short overview
of the components provided by the CPL. In the following chapters you will also find code snippets which
demonstrate the typical usage of the various components. Two small examplesillustrating the two different
kinds of CPL ‘applications’ can be found in the Sections 3.4 and 3.5. Section3.6 will describe the procedure to
follow in case you want to develop an ESO’s VLT instrument pipeline.

After making yourself familiar with main CPL components and concepts, you canstart working on your project
by having a look at the CPL on-line reference manual to get in depth knowledge of the CPL components you
want to use.

3.2 Using theCommon Pipeline Library in your project

If you want to use the CPL, you need to know where the header files and the libraries are installed. By default,
the CPL header files and libraries can be found in the subdirectoriesinclude andlib of the root directory of
your CPL installation, but the actual location might be different depending on the configuration options used at
build time.

In the following, it is assumed that the CPL has been installed in its default location /usr/local, so that the
header files are located in/usr/local/include and the libraries can be found in/usr/local/lib.

Alternatively, the GNU build toolsautoconf, automakeand libtool may be used. In general, this is the rec-
ommended way to compile and link your application. Especially if you are going to develop CPL plugins,
the use of the GNU build tools makes dealing with shared object libraries for different platforms a lot easier.
Comprehensive information on the GNU build tool can be found viahttp://www.gnu.org.

The CPL provides support for the GNU build tools by providing a small collection of autoconf macros in the
two macro archivescpl.m4 andeso.m4. These archives contain, among others, macros to locate the CPL
header files and libraries on your system and to setup the appropriateMakefile symbols needed to compile
and link a CPL application. You can find them in the CPL source tree in the subdirectoriesm4macros and
libcext/m4macros. To use them copy the two files to the source tree of your own project so that they can
be found by theaclocaltool, which is part of the GNUautomakepackage.

If you are going to develop a fully-fledged VLT instrument pipeline, the useof the GNU build tools is not only
recommended, but required. An appropriate CPL SDK containing the necessary tools and a pipeline template
directory tree is available on the CPL web page.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 16 of 99

3.3 Linking your application with the CPL

The CPL librarieslibcpldfs, libcpldrs, libcplui and libcplcore, together withlibcext and thelibcfitsio library,
form a hierarchy,i.e. there are inter-library dependencies, of which you need to be aware, when linking your
application. Figure 1 shows the library dependencies of a CPL application using functionalities from all the
CPL libraries.

Application

Application specific Libraries (optional)

libcplui

libcpldrs

libcplcore

libcext libcfitsio

System Libraries

Li
br

ar
y

D
ep

en
de

nc
ie

s

A
P

I Level
H

igh
Low

Figure 1: Library dependencies of a CPL application

For an application as shown in Figure 1, the linker command would look like the following, with the trailing
ellipsis being a placeholder for any system libraries that are also used:

$ gcc -o myapplication myapplication.o -lmylibrary \
> -L$CPLDIR/lib -lcpldfs -lcpldrs -lcplui -lcplcore -lcext \
> -L$CFITSIODIR -lcfitsio . . .

The order in which the libraries are linked matters and is determined by the inter-library dependencies. This
implies that the order of linking for the two librarieslibcextandlibcfitsiodoes not matter in the above example.
Actually, these two libraries may even be skipped, since the CPL librarylibcplcore usually includes these
dependencies, so that running the command

$ gcc -o myapplication myapplication.o -lmylibrary \
> -L$CPLDIR/lib -lcpldfs -lcpldrs -lcplui -lcplcore . . .

should be sufficient.

An application programmer is free to choose which CPL facilities he or she wishes to use and therefore needs
to link only with the libraries upon which the highest-level library used depends. Therefore, for an application
which uses only components fromlibcplcore, the above linker command would become:

$ gcc -o myapplication myapplication.o -lmylibrary \
> -L$CPLDIR/lib -lcplcore -lcext -L$CFITSIODIR -lcfitsio . . .

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 17 of 99

3.4 Writing a simple Common Pipeline Library application

The CPL libraries can be used as any other library on your system to write applications. This section provides
you with a simple example of how to do this; CPL’s “Hello, world!” program:

#include <cpl.h>

int main()
{

cpl_init(CPL_INIT_DEFAULT);

cpl_msg_info("hello()", "Hello, world!");

cpl_end();

return 0;

}

Compiling this program and running it at the system prompt produces the output:

$./hello

[INFO] Hello, world!

Line-by-line Walkthrough

The first line

#include <cpl.h>

includes the prototype of all the CPL functions. You must include this file wherever you are using any CPL
function.

As with every C-program, a CPL application has to start with the usual definition of themain-function:

int main()

{

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 18 of 99

The first function call

cpl_init(CPL_INIT_DEFAULT);

initialises the CPL. In particular, the library’s memory management system is initialised. The functioncpl_init()
must be called before any other CPL function is called!

Now the application can start doing the real work. The function call

cpl_msg_info("hello()", "Hello, world!");

writes the well-known message to the terminal, with a prefix indicating the message severity. The first argument,
the string "hello()", is the component tag and indicates the program, module or function which emitsthe
message. The component tag is not printed by default and therefore does not appear on the screen. The last
function call in this example

cpl_end();

shuts down the CPL system.

The program ends with a successful return frommain():

return 0;

}

The previous example shows the basic layout of any CPL application. Afterthe library initialisation and the
setup of the messaging system your application can use all the facilities provided by the CPL.

For further details on the messaging component please refer to Section 5.2.10 and the CPL reference manual
[1].

3.5 How to implement a Pluggable Data Reduction Module

This section shows how a simple data reduction task, namely doing basic arithmeticwith two images, can be
implemented using the CPL plugin interface.

What is a plugin

A plugin is a unit of code that can be incorporated into a parent application at run-time. Unlike a static or
dynamic library, the details of the plugin’s existence do not need to be knownby the parent application when
it is built and vice versa. As such, plugins are extremely useful for pipeline-management software or GUIs,
where the developers may wish to modify parts of the pipeline code, without necessarily restarting the parent
application (let alone recompiling it).

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 19 of 99

In a way, this is similar to spawning a child process (although plugins are, in general, executed synchronously).
However, the child-process method then needs to take into consideration communication with the parent ap-
plication, which means the definition of, and strict conformance to, an interface specification, which is then
difficult to check outside the run-time environment. It also means that the child process needs to implement
some interprocess communication methods.

In comparison, a plugin implements its interface simply through the provision of four function calls, that are
expected by the CPL plugin interface in the parent application. The parentapplication does not need to know
about the plugin’s existence at compile time, but can learn about the plugin’sexistence via user input or a
configuration file, during normal execution. It can then query the existence of the plugin, and again handle the
case where the plugin is not available in a graceful manner.

If the plugin is available, then the code within it may be invoked by this standard interface. Of course, the
downside is that, unlike a completely separate child process, the plugin is executed within the address space of
the parent application, which means that fatal errors (e.g. segmentation fault) will take down both components,
unless the appropriate provisions are made.

What is a PDRM

A Pluggable Data Reduction Module(PDRM) is just a specialised type of plugin, suitable for implementing a
data reduction task,i.e.a recipe. In other words, if arecipeis implemented using the CPL plugin interface, it is
called aPluggable Data Reduction Module.

This section demonstrates how easy it is to implement such aPluggable Data Reduction Module. It is easy,
because a plugin developer does not need to know how the input for the data reduction task is created. He or
she can expect that the complete information the data reduction task needs is available when it executes. All the
"nitty-gritty" details of command line parsing, file management, etc., are left to the application using the plugin.

What is needed

To implement a PDRM, four functions have to be implemented which are used by the application to obtain some
information about the plugin, to initialise, execute and "clean it up". In addition, one or more functions doing
the real work are needed too.

An Example

The example shown below describes a PDRM which supports basic arithmetic with images. It will provide one
option, for selecting the arithmetic operation to be executed.

The first function to implement is the one that the application will call initially in orderto obtain the necessary
information about the plugin. This function is described as part of the plugin interface,i.e. the function’s
prototype and its name are defined by the interface but the function needs tobe re-implemented by each plugin.
This is the only function which needs to be exported by the PDRM,i.e. this is the only function which must not
be declaredstatic in the module’s source file.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 20 of 99

The function is calledcpl_plugin_get_info, returns anint, takes a pointer tocpl_pluginlist as its
only argument and it can be implemented either using the public interface of the plugin directly or the provided
convenience function. An implementation, completely ignoring error handling tokeep it simple, would look
like:

#include <cpl.h>

#define MY_PLUGIN_VERSION 1

/* Plugin detailed description */

static const char *
myplugin_help = "This plugin adds, subtracts, multiplies or divides "

"two images depending on the operation choosen by the "
"parameter ‘operation’.";

static int myplugin_create(cpl_plugin *);
static int myplugin_exec(cpl_plugin *);
static int myplugin_destroy(cpl_plugin *);

int
cpl_plugin_get_info(cpl_pluginlist *list)
{

cpl_recipe *recipe = cpl_calloc(1, sizeof *recipe);
cpl_plugin *plugin = (cpl_plugin *)recipe;

cpl_plugin_init(plugin,
CPL_PLUGIN_API,
MY_PLUGIN_VERSION,
CPL_PLUGIN_TYPE_RECIPE,
"myplugin",
"Do basic arithmetic on two images",
myplugin_help,
"Gill Bates",
"gbates@macrohard.com",
"GPL",
myplugin_create,
myplugin_exec,
myplugin_destroy);

cpl_pluginlist_append(list, plugin);

return 0;

}

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 21 of 99

The first line includes all the definitions of the CPL.

The symbolMY_PLUGIN_VERSION is defined to be the recipe’s version number and the static variable
myplugin_help is assigned to the recipe’s detailed description. This is followed by the forward declara-
tions of the three remaining functions which must be implemented to create, execute and destroy the recipe.

The functioncpl_plugin_get_info is implemented as follows. First, memory to hold the recipe object
is allocated. The subsequent cast of the variablerecipe, which is a pointer tocpl_recipe, into a pointer
to cpl_plugin is possible because the classcpl_recipe is a subclass ofcpl_plugin (see the ISO-C
standard ISO/IEC:9899:1999(E) 6.7.2.1 for details).

The cpl_plugin part of the recipe object is then initialised with the version of thecpl_plugin class
implementation, the recipe’s version, the name of this recipe plugin, a short description of its purpose, a longer
help text and license information. The last three arguments passed in the callto cpl_plugin_init are the
functions the application will use to initialise, execute and destroy the recipe plugin. Their implementations are
discussed below.

As a last step, the plugin is appended to the list of plugins. This list must be provided by the application
callingcpl_plugin_init. At this point, the creation of the recipe plugin with all necessary information is
completed and the function returns successfully.

What is left to be done is the implementation of the initialisation, execution and cleanup functions. In the be-
ginning, it was mentioned that our example should be configurable insofar,that a user may select the arithmetic
operation to be performed. It is the duty of the PDRM to provide the informationabout any options it accepts
to an application which uses the PDRM. In our example, we need to define ourarithmetic operator option. The
correct place to do this is the PDRM’s initialiser function. The created parameter(s) are stored in a parameter
list, which can be queried and updated by the calling application. These configuration parameters may, for
instance, be mapped into command line options by the calling application. Since the recipe configuration is cre-
ated during the plugin’s initialisation, it has to be destroyed in the end, namely, inthe plugin’s cleanup handler.
A typical implementation of these two functions looks like:

static int
myplugin_create(cpl_plugin *plugin)
{

cpl_recipe *recipe = (cpl_recipe *)plugin;
cpl_parameter *p;

recipe->parameters = cpl_parameterlist_new();

p = cpl_parameter_enum_new("myplugin.operation",
CPL_TYPE_STRING,
"Arithmetic operation to apply.",
"myplugin",
"add", 4,
"add", "subtract", "multiply", "divide");

cpl_parameter_set_alias(p, CPL_PARAMETER_MODE_CLI, "op");
cpl_parameterlist_append(recipe->parameters, p);

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 22 of 99

return 0;

}

static int
myplugin_destroy(cpl_plugin *plugin)
{

cpl_recipe *recipe = (cpl_recipe *)plugin;

cpl_parameterlist_delete(recipe->parameters);

return 0;

}

In the very beginning, both functions must convert the plugin which has been passed to them from a pointer to
cpl_plugin into a pointer tocpl_recipe to get access to the additional members that thecpl_recipe
class provides. This cast operation is safe since the plugin has been explicitly instantiated as acpl_recipe
in thecpl_plugin_get_info function, that was called initially.

The recipe subclass has two additional members compared to its superclass,the generic plugin. These two data
members are the list of recipe configuration parameters and the set of inputdata frames which it should process.
The list of accepted configuration options is created by the recipe while the set of input frames must be filled in
by the calling application.

In the remainder of the initialisation function, a parameter list and an enumerationparameter is created (please
refer to [1] for the technical details on how to create the various kind of parameters). The created parameter
will allow the selection of the arithmetic operations supported by the recipe. Changing its value, via the calling
application’s user interface, will configure the PDRM using the requestedoperator during its execution. For
the user’s convenience, a short alias name for the parameter is providedwhich may be used by an application
instead of, or in addition to, the parameter’s fully qualified name. Finally, the parameter is appended to the
parameter list. The only operation which is necessary in the cleanup handleris the one required to destroy the
parameter list and all its contents, therefore its implementation is straight forward.

The last interface function which is needed is the function to execute the recipe. Again the implementation is
straight forward, assuming that the actual processing functionmy_image_arithmetics does all the work.

static int
myplugin_exec(cpl_plugin *plugin)
{

cpl_recipe *recipe = (cpl_recipe *)plugin;

return my_image_arithmetics(recipe->parameters, recipe->frames);

}

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 23 of 99

The implementation of the processing functionmy_image_arithmetics is left to the reader as an exercise.

The three functions initialising, executing and destroying the recipe plugin are defined asstatic functions.
There is no need to make them publicly available because they are exported by the plugin interface itself and
they are only called through this interface.

As mentioned before, the example does not implement any error handling. For the three handler functions and
the function to obtain the plugin information it is required that they return0 on success and a non-zero value to
indicate an error.

The complete source code of the example can be found in appendix A. To tryit, you should build a shared
object library from the source and you must provide the actual processing function.

3.6 A specificCommon Pipeline Library application : the VLT instrument pipeline

A VLT instrument pipeline is a very specific CPL-based application. Because of the big number of different
pipelines it needs to maintain and develop, ESO imposes on those a series of standards and/or constraints that
must be strictly followed:

• The coding style must follow a series of common rules (the error checking must be done extensively, the
code must be well documented using the same doxygen documentation tags, etc.).

• The pipeline source directory tree structure must follow the standard (organisation, usage of the GNU
toolsautoconfandautomakein a standard way, etc.).

• The FITS header keywords access must be done in a standard way.

• The DFS-related parts must be defined in a standard place.

• The libcext library must not be used.

• TheCFITSIO functions may be used directly if they are compatible with theofficially supportedCFIT-
SIO version, currently rel. 3.0.9; mixing different CFITSIO versions mayproduce unexpected behaviour
- no support from ESO can be expected in that case.

• The pipeline products must be written with the proper format, keywords, etc.The information about their
existence must be given toesorex for further processing.

These are only the main constraints that need to be followed by a VLT instrument pipeline. The total list can be
very long, and difficult to describe in a document (especially when it comesto error handling or coding style).

If you want to know more about these specifications, see the DFS Deliverables Specification document [2] and
the Data Flow Pipeline and Quality Control Users Manual document [3]. Seethe ESO DICB – Data Interface
Control Document [4] for informations about FITS header keywords.

Of course, if you want to develop your own CPL-based application that isnot a pipeline, you still can use the
pipeline template and benefit from the fact that the plugin is already properlydefined and ready to be executed
with esorex.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 24 of 99

4 CPL general design features

4.1 OO approach

The CPL has been written in C, but following an object-oriented (OO) approach wherever it makes sense.
Modules are built around a class, which comprises atypedef (usually astruct) and a list of associated
methods to work on it.

For example, the image class is built like this:

/* Class definition */
typedef struct _cpl_image_ {

... CPL image attributes ...
} cpl_image ;

/* Associated methods */
cpl_image *cpl_image_new(...);
cpl_image *cpl_image_load(...);
void cpl_image_delete(...);

Understanding the library means parsing through the list of offered components and looking at the implemented
methods. There are components for the handling of the data to process (images, images lists, masks, tables, vec-
tors, ...) and purely functional components to help programmers, such as themessaging and the error handling
components.

‘Data hiding’ is used everywhere. All objects remain opaque and are onlymanipulated through accessor func-
tions. See the documentation for each component.

Polymorphism is hard to achieve in C, and is seldom used, if at all, in the CPL. The OO approach is limited here
to defining objects with attributes and methods.

4.2 Portability

The CPL is intended to have a long service life and evolve in accordance withthe needs of the VLT. To avoid
locking the code to any particular platform, portability has been considered throughout the design of the CPL.
Achieving portable code is done in the CPL through tools likeautoconf andautomake that try to catch
all system dependencies and make them look the same to library users, ironing out any local peculiarity (e.g.,
HP-UX lacks many standard tools or has them with different names). But thisis not the end of the story. During
development, we kept in mind all the basic portability rules and relied on the use of compiler options (like
-ansi, -pedantic-errors, -Wall), and tools such aslint. The aim was that the CPL should be usable
on any kind of POSIX-compatible system.

System-specific optimisations may be added later if they do not involve modifying any API in the code. If
optimisations are introduced, they shall be resolved at compile-time and hiddenfrom library users.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 25 of 99

4.3 The extended memory model

The library offers a set of memory allocation/deallocation functions:

cpl_malloc()
cpl_calloc()
cpl_realloc()
cpl_free()
cpl_strdup()

These functions are meant to replace the default standard library functions that control and handle all memory
allocation in applications. The behaviour of these functions is controlled with the configuration of the CPL.
By default, they use the standard system memory handling functions. Nevertheless, it is possible to switch on
(–enable-memory-mode option of configure) the extended memory functionsdescribed here.

4.3.1 Advantages of using the extended memory functions

By using these functions, some information about the allocated and deallocated pointers is internally kept. This
way, the system knows at any moment the list/size of the still allocated pointers, making it easier to track
memory leaks.

It is possible to check for memory leaks at any moment using the appropriate memory-report functions:

cpl_memory_is_empty()
cpl_memory_dump()

4.3.2 Drawbacks of using the extended memory functions

These functions keep internally various informations on every single pointer that is currently allocated. Thus,
you need to know when you install CPL which value you are never going to exceed in terms of number of
pointers allocated at the same time in your programs. The default is currently set to 200000, which should be
enough for most applications.

Note that the cpl_propertylist uses a lot of pointers when it contains large FITS headers. In order not to exceed
this limit, you may try not to load all your input files headers in property lists at thesame time if this is not
necessary.

If the maximum number of pointers your application may need is bigger than that (say around 300000), you
need to specify this when you install CPL:

Instead of typing:

$./configure --enable-memory-mode=2

you may type:

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 26 of 99

$./configure --enable-max-ptrs=500000 --enable-memory-mode=2

To increase the supported number of pointers, you just need to reconfigure, recompile and reinstall CPL.

Note that the pointers information table is statically allocated, and that using enormous values (i.e. table size)
would cause the memory consumption of CPL unreasonably high.

4.3.3 Using the extended memory

The memory allocated inside the CPL has to be deallocated using the provided memory handling functions.
This can be done either with the CPL objects destructor (e.g., cpl_image_delete()) to deallocate CPL
objects or withcpl_free() for normal arrays created by CPL functions.

You are free to use the CPL memory functions to allocate/deallocate your memoryin your code withcpl_malloc(),
cpl_calloc(), cpl_realloc(), cpl_strdup() or cpl_free().

The only rule is that all the memory allocated with the CPL memory functions must be deallocated with them.

If you do not want to use the extended memory system in your application, and do not want it to be used in CPL,
you can configure CPL with the option –enable-memory-mode=0 like this:

$./configure --enable-memory-mode=0

This way, the offered functionscpl_malloc(), cpl_calloc(), cpl_realloc(), cpl_strdup() or
cpl_free() will simply call the associated system functions.

This is the default behaviour from CPL version 4.0 on.

4.4 Error handling

Error handling in the CPL is done through thecpl_error component (see Section 5.2.11).

4.5 Library stability

The CPL group will strive to keep the API stable, in order to allow for an easier maintenance of the many VLT
pipelines. New releases will mostly provide new functionality and bug fixes, but radical design changes will be
avoided as much as possible.

4.6 Code conventions

The coding conventions adopted in the CPL are basically the ones described in Recommended C Style and Cod-
ing Standards [5]. Although the coding language used is ISO-C [ISO/IEC:9899:1999(E)], the CPL developers
have adopted an object oriented approach. A series of objects are defined (image, table, etc.) in the library and
methods are associated to them.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 27 of 99

4.6.1 Objects

An object is a Cstructurethat contains all the information needed to describe it. The objects included in the
CPL have been designed to be as small as possible. All the attributes associated with an object are mandatory.

An image, for example is defined as an array of pixels, its image size in X and Y,its pixel type and possibly a
bad pixel map; nothing more.

If more complicated objects are needed, it is left to the developer to define higher level objects based on the
CPL objects and other opportune parameters and attributes.

Each object has oneconstructorwhich allocates the necessary memory, and adestructorto deallocate it. The
destruction of objects should always be done through its dedicated method.

4.6.2 Methods

Apart from the constructor and destructor, each function which operates on an object is called a "method" of
this object.

Any method can create or modify an object. In the latter case, the modified object should be passed as the first
parameter to the function. Of course, a method can also use an object without modifying it.

In case of failure, the input object shallalwaysremain unchanged.

4.6.3 Functions

All functions shall be able to inform their caller about the success of their execution, either by returning an
error code (CPL_ERROR_NONE in case of success, the appropriate error code otherwise) or by returning a
conventional value (such as a NULL pointer when a valid pointer is expected) and setting appropriately the
error code (see section 5.2.11).

4.7 Naming Conventions

The following defines the construction of a CPL function name - and other types of identifiers in the CPL
namespace. This enables uniformity of nomenclature, easing the search and the identification of either known
or unknown functionality.

Symbolic constants shall conform to the following naming conventions:

• A CPL symbolic constant name consists of fields, which are separated by thethe underscore character
(_).

• A field starts with an upper-case letter and is followed by upper-case lettersand digits.

• The first field shall beCPL.

A CPL function name adheres to the following rules of syntax:

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 28 of 99

• A CPL function name consists of fields, which are separated by the the underscore character (_).

• A field starts with a lower-case letter and is followed by lower-case letters anddigits.

• Each field has a meaning, depending on its place in the sequence of fields.

A CPL macro (that is a#define accepting arguments, as opposed to symbolic constants) shall conform to the
same naming conventions as those of CPL functions.

4.7.1 Meaning of Fields

The different fields composing a CPL function name have a specific meaning, depending on their position in the
name.

The fields are:

Library The first field is the library name, i.e., the library to which the function belongs.In the case of the CPL
functions, is it always set tocpl. The library field is mandatory.

Subject The subject refers to the main CPL section where the function is defined and implemented. It may be
one of several subject types:

1. Object - This is the CPL object which is handled by the function. Objects are, for instance,image
andtable.

2. Domain - This is the functional area in which the function has been inserted. The domain is used to
group functions sharing similar scope, but not acting on a specific object,such as the CPL messag-
ing,geom (geometry), andphotom (photometry) functions.

3. Exceptions - There are a few CPL functions which do operate neither ona CPL object nor within
a given domain. Exceptionally, the names of these functions do not include any subject field:
cpl_{init,free,assure}(), cpl_{malloc,realloc,calloc,strdup}().

The subject field is mandatory, with the mentioned exceptions.

Verb The verb defines the action on the subject.

1. Existentials - These indicate the creation or destruction of an object (textttnew,delete,create...).
For instance, the function namedcpl_vector_new() creates a new CPL vector.

2. Morphologicals - Change the size of an existing CPL object. The number of elements within the
object is changed. For instance,cpl_matrix_append() is used to append a matrix to another
one whose size is therefore modified.

3. Elementwise operators - These are functions that act on each specified element of the CPL object.
For instance,cpl_image_add() sums two images, pixel by pixel.

4. Global operators - These are functions that act on a CPL object as awhole. For instance,cpl_vector_correlate()
is used to correlate two vectors.

5. Generic - The following do not fall into the above categories:get, set, is, has anddump.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 29 of 99

6. Exceptions - These are verbs which do not apply to neither a CPL object nor a domain. Strictly
speaking, they are subject free. See the above exceptions.

The verb field is mandatory.

Qualifier A qualifier specifes the object or concept upon which the verb acts, in thecontext of the subject.
There are three types of qualifiers:

1. Read/Write Attributes - These are attributes of a CPL object that may be setor retrieved, as in the
functionscpl_polynomial_{set,get}_coeff().

2. Read-only Attributes - These are attributes of a CPL object for which it isnot meaningful to set a
value, although the object possesses one that may be computed, as in the functioncpl_image_get_median()

3. Others E.g.cpl_table_new_from_model().

The qualifier field is optional.

Item/Concept A further specification of the functionality, e.g.

1. CPL object(s)

2. attributes of an existing CPL object (e.g.size).

3. primitiveC type (string for char * andint, float, double)

This field is optional.

Sub-item A further specification of the functionality, e.g.

1. attributes of an existing CPL object (column, row andwindow).

2. primitiveC type (string for char * andint, float, double)

This field is optional.

4.7.2 Lexicon

Subject The following words are permitted as subjects. These represent the modulesin CPL. Objects that end
with set or list are collective objects, while the rest are singular objects. listindicates that the collection of
objects is ordered, while set indicates that the collection is unordered. (Strictly speaking,table is thus
acolumn-set).

• array

• bivector

• column — Internal to CPL

• error

• frame

• frameset

• image

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 30 of 99

• imagelist

• mask

• matrix

• memory

• msg

• parameter

• parameterlist

• plugin

• pluginlist

• polynomial

• property

• propertylist

• stats

• table

• tools — Internal to CPL

• type

• vector

The following words are also permitted as subjects. These represent functional areas in the higher-level
sections of the CPL. This list will likely be extended.

• apertures

• detector

• dfs

• fit

• flux

• geom

• photom

• ppm

• wcs

Verb The following words are permitted as verbs.

Existentials

• delete (Destructor)

• unwrap (Destroys object, leaving internal components intact, c.f.wrap)

• wrap (Constructor of a new object composed around existing data, c.f.unwrap)

• duplicate (Copy constructor)

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 31 of 99

• extract (Create a new object which contains a part of another object, e.g. createa vector
from part of another vector)

• load (Constructor from file, c.f.save)

• new (Constructor)

• save (Create file of an existing object, c.f.load)

• offset (Image combination incpldrs)

• filter (Filtering always create a new object)

• cast (Casting always create a new object)

Morphologicals

• append (Add an element to the tail of an object)

• collapse (Remove a dimension of a multi-dimensional object)

• erase (Remove element(s) from an object, c.f.insert)

• insert (Add an element to an object, c.f.erase)

• prepend (Add an element to the head of an object)

Global operators

• correlate (Compute the cross-correlation between two objects)

• count (Get the number of occurrences of some object attribute)

• shift (Rearrange elements in a CPL object)

• find (Locate an element within a CPL collective object)

• interpolate (Compute an interpolated value)

• flip (Reverse the order of elements in a CPL object)

• fft (Compute the FFT of a CPL object)

• turn (Rotate the elements of a CPL object through a multiple of 90 degrees)

• invert (Compute the inverse (matrix))

Elementwise operators

• abs (Absolute value of each element)

• add (Add elements at equivalent positions)

• and (Binary AND on elements at equivalent positions)

• average (Determine the average of elements at equivalent positions)

• cast (Convert the type of elements in an existing object)

• copy (Overwrite some/all elements in an existing object)

• divide (Divide elements at equivalent positions)

• fill (Assign values to specified elements within a CPL object)

• reject (Flag element, e.g. set bad-pixel, c.f.accept)

• labelise (Assign numeric labels to associated elements)

• multiply (Multiply elements at equivalent positions)

• normalise (Rescale elements to lie within a given range)

• not (Binary NOT on elements)

• or (Binary OR on elements at equivalent positions)

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 32 of 99

• subtract (Subtract elements at equivalent positions)

• threshold (Assign a value to elements whose value lies outside a specified range)

• accept (Unflag element, e.g. remove bad-pixel, c.f.reject)

• xor (Binary XOR on elements at equivalent positions)

Generic

• get (Retrieve the value of an attribute associated with an object)

• set (Assign a value to an attribute associated with an object)

• dump (Print the object content to stream, for debugging)

• is (Used for checking existence or state)

• has (Used for checking existence or state)

Additionally, the following words are permitted as verbs in subject free function names.

• assure (Ensure the presence of a given condition and handle the case where this is not true)

• calloc (Allocate memory initiliased to zero)

• free (Deallocate memory associated with a pointer)

• init (Initialise an object and system)

• malloc (Allocate memory)

• realloc (Reallocate the memory associated with a pointer)

• strdup (Duplicate a character array)

Qualifiers The words permitted as qualifiers are listed in appendix C.

Items The words permitted as items are listed in appendix C.

Sub-items The following words are permitted as sub-items:

• column

• double

• float

• int

• row

• string

• window

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 33 of 99

5 The CPL components

5.1 Component libraries

The functionality of the CPL is provided by four component libraries, implementing the low-, medium- and
high-level CPL interfaces respectively, plus a DFS specific functions library. This allows applications to be
linked with only the parts of theCommon Pipeline Librarythat are necessary.

The core library,libcplcore, provides the basic types like vectors, images and tables, as well as the basic signal
and image processing functionalities. It also provides facilities for accessing data files, for error signalling, and
a set of functions for displaying messages and maintaining log files.

The libcplui library implements the medium-level data types and utilities serving as an interface tothe pipeline
run-time environment.

Standard implementations for instrument-independent data-reduction functions and functions for monitoring the
data quality are provided by thelibcpldrs library.

Finally, thelibcpldfs library is there to insure the compliance of the pipeline products by implementing some of
the important DFS requirements on the pipeline products.

For the low-level implementation of container data types (such as lists, or dictionaries), or utilities not available
on every UNIX system, the CPL libraries themselves depend on a small C library libcextextending the standard
C library.

For access to FITS data files, the CPL internally relies on theCFITSIO FITS I/O library. Since the CPL
provides high-level facilities to read and write data from/to a FITS file, directcalling of CFITSIO functions is
only permitted on exceptional cases, and within the scope ofad hocloading and saving functions.

The low-level librarylibcext, delivered together with the CPL, is an internal library exclusively used by the CPL
and its functions shall not be called directly by any VLT/VLTI pipeline.

5.2 Core objects inlibcplcore

5.2.1 Images

A cpl_imageis conceptually a 2-dimensional array of pixels with two main characteristics. Firstly, acpl_image
can be of several different types (currently supported aredouble, float, int and complex). Secondly, each
cpl_imagecan carry with it the knowledge of its own bad pixels, referred to as a bad pixel map.

All the CPL functions whose name start withcpl_imagedeal with images. Some of them return a newly al-
located image (cpl_image_xxx_create(), xxx_new(), xxx_wrap_xxx()or xxx_load()functions) and some others
work locally on the passed image. The newly allocated images must later be deallocated with one of the de-
structors (cpl_image_delete() or cpl_image_unwrap()).

The following operations can be performed through thecpl_imagemethods’ interface:

• creating, loading from FITS files, saving to FITS files or deallocating images

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 34 of 99

• copying images, converting images from one type to another or accessing image information

• set or unset bad pixels in an image, count them, set the bad pixels from an ASCII file or from a binary
image

• basic image operations, normalisation, thresholding, averaging, collapsing,extraction or flipping

• various statistical computations on images

• linear, median or morphological filtering operations

• resampling functionalities

• generation of images with random uniform noise, or with gaussian functions

The different image components are described in the following sections. For some of them (cpl_image and
cpl_image_bpm), the way the data are stored internally is described. This is just to give a better idea on
what the CPL can do and how efficient it can be. But these internal structurescannotbe accessed directly; every
developer must/can only use the accessor functions provided in the library. By doing so, you ensure that you do
not need to change your code after any CPL update, as the internal structures may change from one release to
the next.

1. The image structure

An image comprises a size in x and y (in pixels), and a pointer to an array of pixels. The type field, and
the fact that the pixels are defined as void, allows this structure to contain any of the supported image
types (float, double, integer or even complex images).

The image-processing functions provided in the CPL can handle any meaningful kind of image. A user
would call the same function to filter a double or a float image.

Moreover, it is possible to attach to any image the knowledge of its bad pixels withthe badpixelmap field.
Again, any image processing function in the CPL takes this bad pixel map into account whenever one is
defined.

The implementation of thecpl_imagestructure looks like:

typedef struct _cpl_image_
{

int nx, ny;
cpl_type type;
void * pixels;
cpl_mask * badpixelmap;

} cpl_image;

The image pixel buffer is two-dimensional but stored in a 1-dimensional array of pixels for efficiency
reasons. Pixels are numbered (like arrays in C) from 0 tonx · ny − 1.

Note that this pixel organisation does not pre-suppose any given orientation for the lines in the image.
The CPL convention, like the FITS convention (and as opposed to most other image formats), numbers

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 35 of 99

Image Pixels array in cpl_image

i=2, j=3, nx = 3 (i−1) + (j−1)* nx = 7

0 1 2 ...

Figure 2: Pixel storage in the 1D data array

lines from bottom to top. However, this is not an issue for most image operators. The pixel in thei-th
column and thej-th row (starting at the lower left corner, conventionally correspondingto column 1 and
row 1) would be the pixel number(i − 1) + (j − 1) ∗ nx in the array (see Figure 2).

These fieldscannotbe accessed directly. They are shown here for information pupose. Accessor functions
are provided to access the pixels or the image informations (see IO routines description).

2. The image IO routines

There are four kind of functions that can be used to generatecpl_imageobjects.

Thecpl_image_new() function will create a new image of the specified size and type, with pixels
values set to 0 and an empty bad pixel map.

Thecpl_image_load() function will load an image from a FITS file. If you load an image from a
FITS file, you have to specify which plane (you can store cubes in FITS files) in which extension, which
type of image you require, and the function will give back to you the specified newly allocatedcpl_image.

The cpl_image_wrap_xxx() functions will create acpl_imageobject around an already existing
passed data array. This image will have to be deallocated with thecpl_image_unwrap()function.

Thecpl_image_new_from_xxx() functions will create newly allocated images using data coming
from other CPL objects.

Examples:

cpl_image *im1;
cpl_image *im2;
cpl_matrix *kernel;

/*
* Create a new image.

* CREATES A NEWLY ALLOCATED OBJECT THAT MUST BE DESTROYED.

*/
im1 = cpl_image_new(1024, 512, CPL_TYPE_FLOAT);

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 36 of 99

/* Define the kernel */
...

/*
* Apply a median filter on im1.

* CREATES A NEWLY ALLOCATED OBJECT THAT MUST BE DESTROYED.

*/
im2 = cpl_image_filter_median(im1, kernel);
cpl_matrix_delete(kernel);

/*
* Subtract im2 from im1, a local operation.

* DOES NOT CREATE ANY NEWLY ALLOCATED OBJECT.

*/
cpl_image_subtract(im1, im2);

/* Delete both images */
cpl_image_delete(im1);
cpl_image_delete(im2);

Please note that somecpl_imagegeneration functions are provided in thecpl_image_gencomponent.
These ones are mainly used in our testing facilities.

This component also provides the possibility to convert images to another type, to save images to a FITS
file or to duplicate images. It also provides a series of accessor functionsto retrieve the image size, type,
number of bad pixels or a pointer to the data buffer.

Thecpl/tests/cpl_image_io-test.c file contains examples ofcpl_image_io function us-
age.

3. The basic image operations

This component offers the possibility to apply basic operations between images, including element-wise
addition, subtraction, multiplication and division.

Since all but unary operators may have image operands of different types we define the type of the result
to be that of the first operand. This means that with the CPL, the addition or multiplication of two images
of different types is non-commutative.

We define the result of an arithmetic operation on two pixels of which one or both are bad to be a bad
pixel.

The resulting bad pixel map of an element-wise-operation on two images is therefore the union of the bad
pixel maps of the two operands. See Figure 3.

4

3 2

1 3 6

4 25

724 31

8

7

6

5

1

62 9 65 11

25 14 35

8 6 8

Figure 3: Bad pixel map handling in basic images operations

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 37 of 99

For performance reasons, the operations are actually computed on all pixels (including any bad ones).

Functions between an image and a scalar variable are also offered (addition, subtraction, multiplication,
division, logarithm and exponential). In this case, the bad pixel map and theimage type remain un-
changed.

Extraction, rotation, thresholding, collapsing and normalisation functions are also available. The handling
of the bad pixels in these functions is intuitive.

In the normalisation, the scaling factor is computed using the CPL image statistics functions which ignores
the bad pixels.

In the collapsing function, bad pixels are ignored in the flux summation (normalbehaviour of the statistics
function), with a result that has a bad pixel only in the rare case where allpixels along the collapsing
direction are bad (see Figure 4).

1 3 6

4 25

724 31

5

0

9

11

7 8

Figure 4: Bad pixel map handling in the collapsing function

Thecpl/tests/cpl_image_basic-test.c file contains examples ofcpl_image_basic func-
tion usage.

4. Statistics on images

Several functions providing various statistics oncpl_imageobjects are offered: the value and position of
the minimum and maximum pixels, the mean, standard deviation, median, absolute fluxand flux in the
image or just in a rectangular part of the image. Real-valued statistical functions are implemented as type
doubleregardless of the type of the input image. The statistics ignore bad pixels as shown in Figure 5.

9 65 11

25 14 35

8 6 8

1

2

3

77

67

34

5912 5

9

86

7

4

2 1

9

7

34

23

73

6

5

5

0

0

6

6

1

9

9

01

image

maximum at position : 5, 3
maximum value: 14
minimum at position: 5, 2
minimum value: 6
mean = (9+11+14+8+8+6)/6 = 9.33333
median = 9
etc...

cpl_image_get_xxx_window(image, 4, 2, 6, 4)

Figure 5: Bad pixel map handling in statistics computations

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 38 of 99

5. The image filtering functions

This component offers linear filtering, morphological filtering, median filtering and standard deviation
filtering.

Without a separate handling of bad pixels, filtering involving a bad pixel will typically corrupt the neigh-
bouring pixels as shown in Figure 6.

1 1 1
1 1 1
1 1 1

Linear filtering with the following

3x3 kernel:

Figure 6: Filtering without bad pixels handling

In filtering it is therefore a significant improvement to be able to identify bad pixels and handle them
properly. In the CPL, the filter functions simply ignore the bad pixels, and use only the good ones in the
neighbourhood to compute the new value.

Figure 7 shows the result obtained when the bad pixel is correctly tagged.

1 1 1
1 1 1
1 1 1

Linear filtering with the following

3x3 kernel:

Figure 7: Filtering with the pixel (16, 6) tagged as bad

This example shows that it is very important to flag the bad pixels as such; the neighbours are not affected
by the filtering, and the bad pixel itself can be recomputed using the good neighbours. The only case
where a bad pixel stays bad in the filtered image is when it only has bad pixels as neighbours.

Please note that the borders of the filtered image are set as bad pixels in the filtered image.

Thecpl/tests/cpl_image_filter-test.c file contains examples ofcpl_image_filter
function usage.

5.2.2 Masks

A cpl_maskis a two dimensions map in which the elements can only have two different values.This object is
used to represent bad pixel maps or binary images.

Binary images are widely used (and very useful) in image processing for object or edge detection.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 39 of 99

This object comes with the basic morphological operations like erosion, dilation, closing and opening, and also
the logical operations likeand, or, not andxor.

A basic thresholding function (cpl_mask_threshold_image_create()) to “binarise” an image is provided. Fig-
ure 8 illustrates its effect on an example, where the threshold is computed with the cpl_image_statsfunctions
on the input image to obtain acpl_maskobject.

Threshold
(Mean+2*Sigma)

Figure 8: Use of thresholding to binarise an image to a mask

Some simple morphological operation can be applied to the mask to make one connected object out of each
detected star as shown in Figure 9. The operation applied here is a closing (erosion + dilation).

Closing

Morphological

Figure 9: Effect of a morphological closing

Once the different objects are connected, we can apply a labelisation (withcpl_image_labelise_mask_create())
on the mask to differentiate them automatically (see Figure 10). The mask is transformed into an integer image
where the non-selected pixels are set to 0 and pixels of each separate object are set to a label value. In this
example, the labels go from 1 to 9.

Such an integer image is a convenient tool to apply some computations on one and only one specific object at a
time like it is done in the section 5.4.1.

Thecpl_mask-test.c file in the CPLtests directory contains examples ofcpl_mask function usage.

5.2.3 List of images

Thecpl_imagelistobject is an extension of thecpl_imageobject. It is a container for several images. A list of
images can only contain images of the same type, and of the same size. To ensure the validity of an image list
(basically that these conditions are verified), one can use thecpl_imagelist_is_uniform()function.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 40 of 99

Labelise

Figure 10: Labelisation of a mask to an integer image

The two main ways to create an image list are either to load one from a FITS file extension withcpl_imagelist_load()
or from a set of frames withcpl_imagelist_load_frameset(), or to create one ”by hand” with calls tocpl_imagelist_new()
andcpl_imagelist_set().

Every image list must be deallocated usingcpl_imagelist_delete(). Note that if you set images in an image list,
you have to leave those images allocated, they will be deallocated by thecpl_imagelist_delete()call.

Once you have your image list created, you can perform series of simple operations between an image list and
an image, or a scalar. You also can collapse an image list, normalise it or threshold it.

5.2.4 Tables

Tablesare generally defined as rectangular arrangements of cells, where cellsbelonging to the same column
contain data of the same type, while cells from the same row are related by some unifying characteristics. The
cpl_tablecomponent is strictly based on this definition.

Currently, three basic numerical types are supported for a CPL table column:CPL_TYPE_INT,CPL_TYPE_FLOAT,
and CPL_TYPE_DOUBLE. A type indicating columns made of character strings,CPL_TYPE_STRING, is also
supported. From the above mentioned basic types, array types can be derived, i.e., a table column element may
be an array of numbers, or an array of character strings.

A table column should only be accessed through thecpl_tableinterface, by specifying its name. The ordering
of the columns within a table is undefined; acpl_tableis not an-tuple of columns, but just a set of columns. The
N elements of a column are counted from0 to N − 1, with element0 on top. The set of all the table columns’
elements with the same index constitutes a table row. It is possible to flag eachcpl_tablerow as ‘selected’ or
‘unselected’, and each column’s element as ‘valid’ or ‘invalid’. Selectingtable rows is mainly a way to extract
just those table parts fulfilling any given condition, while invalidating column elements is a way to exclude such
elements from any computation.

The cpl_tablecomponent ensures optimal performance and memory handling for most purposes. However,
a pointer to the primitive data types contained in a specific column or cell may be obtained, whenever the
developer finds that some table system performance drawback needs to be overcome.

A cpl_tablemay be created by means of its specific constructors, and used for storage and handling of informa-
tion that was generated within a program. The code in this case may look like this (error checking is omitted for
clarity):

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 41 of 99

...
#include <cpl.h>
...
int main()
{

...
cpl_table *table;
int number_of_rows;
int depth;
...

cpl_init(CPL_INIT_DEFAULT);
...
number_of_rows = 100;
depth = 5;
...
table = cpl_table_new(number_of_rows);

cpl_table_new_column(table, "Player", CPL_TYPE_STRING);
cpl_table_new_column(table, "Games won", CPL_TYPE_INT);
cpl_table_new_column(table, "Games lost", CPL_TYPE_INT);
cpl_table_new_column(table, "Success rate", CPL_TYPE_FLOAT);
cpl_table_new_column_array(table, "Scores", CPL_TYPE_INT, depth);
cpl_table_new_column_array(table, "Other players", CPL_TYPE_STRING, depth);
...
cpl_table_delete(table);
...
cpl_end();
return 0;

}

Alternatively, acpl_tablemay simply be loaded from a FITS file table extension, as in the following example:

...
#include <cpl.h>
...
int main()
{

...
cpl_table *table;
int number_of_rows;
...

cpl_init(CPL_INIT_DEFAULT);
...

/*
* Loading a table from extension 2 of a FITS file. The last

* argument indicates that invalid table elements should be

* flagged.

*/

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 42 of 99

table = cpl_table_load("Championship_2005.fits", 2, 1);
number_of_rows = cpl_table_get_nrow(table);
...

/*
* Write the processed table to disk in FITS format (using a default

* FITS header), clean memory, then exit.

*/

cpl_table_save(table, NULL, NULL, "Revised_Championship_2005.fits", 0);
cpl_table_delete(table);
...
cpl_end();
return 0;

}

It is also possible to load part of a FITS table into memory: this may turn advantageous in case of very large ta-
bles. This can be done using the functioncpl_table_load_window() instead ofcpl_table_load().
For instance, in order to load 4 rows starting from row 2, in the above example the call tocpl_table_load()
should be replaced by

table = cpl_table_load_window("Championship_2005.fits", 2, 1, NULL, 2, 4);

The fourth argument of this function may also be used, for defining a subset of columns to be loaded.

The following operations can be performed through thecpl_tablemethods’ interface:

• Defining and allocating new columns.

• Creating new columns pointing to external data.

• Reading and writing table cells.

• Shifting positions of column values.

• Supporting invalid table cells, and invalid array elements.

• Computing statistical quantities, performing arithmetic with scalar columns, etc., excluding invalid cells
from the computations.

• Exporting column data, assigning a code of choice to invalid numerical cells.

• Column duplication, casting, moving from one table to another.

• Resizing tables.

• Merging tables.

• Duplicating tables.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 43 of 99

• Creating new tables modelled on existing tables.

• Sorting table rows.

• Selecting and extracting subtables from existing tables.

• Loading and saving tables as FITS files.

The methods to support these and other operations are all described in detail in theCPL Reference Manual[1]
but, in the following, some of the functionalities are explained with the help of a number of simple examples.

1. Accessing table elements

A table column can be accessed by specifying its name, while one of its elements can be accessed by
specifying its table row number. As mentioned above, a table column may also consist of arrays of the
basic supported types. In this case by specifying a column name and a table row number an array will be
returned, whose elements will then be accessed by specifying their positionalong the array.

Note that, in the same way as all the columns of a table must have the same length (corresponding to the
number of rows in the table), all the arrays in a given column must have the same size. The length of the
arrays belonging to the same column is conventionally called thedepth of the column. In the following
example it is shown how to access table elements both from simple columns and from columns of arrays
(error checking is omitted for clarity):

...
#include <cpl.h>
...
int main()
{

...
cpl_table *table;
cpl_array *array;
int number_of_rows = 100;
int depth = 5;
char *player;
int score;
...

cpl_init(CPL_INIT_DEFAULT);

table = cpl_table_new(number_of_rows);

cpl_table_new_column(table, "Player", CPL_TYPE_STRING);
cpl_table_new_column(table, "Games won", CPL_TYPE_INT);
cpl_table_new_column(table, "Games lost", CPL_TYPE_INT);
cpl_table_new_column_array(table, "Scores", CPL_TYPE_INT, depth);
cpl_table_new_column_array(table, "Other players", CPL_TYPE_STRING, depth);

/*
* Writing the name "Ren" as a Player at row 42, and the number of

* games won and lost.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 44 of 99

*/

cpl_table_set_string(table, "Player", 42, "Ren");
cpl_table_set_int(table, "Games won", 42, 0);
cpl_table_set_int(table, "Games lost", 42, 5);

/*
* Now write the scores: an array of as many values as the depth

* that was declared for the columns to access. In this case the

* array is filled with 0.

*/

array = cpl_array_new(depth, CPL_TYPE_INT);
cpl_array_fill_window_int(array, 0, depth, 0);
cpl_table_set_array(table, "Scores", 42, array);
cpl_array_delete(array);

/*
* At the end the array can (and must) be deleted, since it was

* physically copied to the table. If efficiency reasons make this

* duplication of an array impracticable, the cpl_table_set_array()

* call may be replaced by:

*
* cpl_table_get_data_array(table, "Scores")[42] = array;

*
* where the created array is directly "plugged" into the appropriate

* column element. Of course in this case cpl_array_delete(array) must

* not be used.

*/

/*
* Now write the players to the column of arrays of character strings:

*/

array = cpl_array_new(5, CPL_TYPE_STRING);
cpl_array_set_string(array, 0, "Stimpy");
cpl_array_set_string(array, 1, "Goofy");
cpl_array_set_string(array, 2, "Micky");
cpl_array_set_string(array, 3, "Donald");
cpl_array_set_string(array, 4, "Pluto");
cpl_table_set_array(table, "Other players", 42, array);
cpl_array_delete(array);

/*
* Again, the last two calls may be replaced by the more efficient

*
* cpl_table_get_data_array(table, "Other players")[42] = array;

*
* Note that the analogous

*
* cpl_array_get_data_string(array)[0] = "Stimpy";

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 45 of 99

*
* cannot be used in this case, because "Stimpy" is a constant string

* that cannot be released by the table destructor.

*/

/*
* Now access some of the written data:

*/

player = cpl_table_get_string(table, "Player", 42);
score = cpl_table_get_int(table, "Games won", 42);
...
array = cpl_table_get_array(table, "Other players", 42);
player = cpl_array_get_string(array, 2);
array = cpl_table_get_array(table, "Scores", 42);
score = cpl_array_get_int(array, 2);

/*
* Do not use:

*
* cpl_free(player);

* cpl_array_delete(array);

*
* The accessors just return a pointer to an internal element, that

* will be released at table destruction.

*/

...
cpl_table_delete(table);
...
cpl_end();
return 0;

}

2. Support of invalid table cells

Table cells may be flagged as invalid. This is, in general, a way to exclude someof the values from a
given operation, for instance the computation of a mean, or of an arithmetic operation, as in the following
example (error checking is omitted for clarity):

...
#include <cpl.h>
...
int main()
{

...
cpl_table *table;
int i;
int nrows = 10;
double mean;
...

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 46 of 99

cpl_init(CPL_INIT_DEFAULT);

/*
* Create a table with a predefined length of 10 rows, and create

* an integer column named "Numbers" with the numbers from 1 to 10:

*/

table = cpl_table_new(nrows);

cpl_table_new_column(table, "Numbers", CPL_TYPE_INT);
for (i = 0; i < nrows; i++)

cpl_table_set_int(table, "Numbers", i, i + 1);

/* Flag the "Numbers" column’s first and third elements as invalid */

cpl_table_set_invalid(table, "Numbers", 0);
cpl_table_set_invalid(table, "Numbers", 2);

/*
* Compute the mean value: the values flagged as invalid are

* automatically excluded from the computation:

*/

mean = cpl_table_get_column_mean(table, "Numbers");

/*
* Now write again some valid values. A different mean value is

* now computed.

*/

cpl_table_set_int(table, "Numbers", 0, 1);
cpl_table_set_int(table, "Numbers", 2, 3);

mean = cpl_table_get_column_mean(table, "Numbers");

/*
* In the case of a column of arrays, or also of character strings,

* invalidating an element means to release it from memory:

*/

cpl_table_new_column(table, "Character strings", CPL_TYPE_STRING);

/*
* Write a character string to table element 5 of column

* "Character strings". The test string is duplicated:

*/

cpl_table_set_string(table, "Character strings", 5, "test string");

/*
* Invalidating this string means to destroy it:

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 47 of 99

*/

cpl_table_set_invalid(table, "Character strings", 5);

/*
* The same happens with a column of arrays: here a column of integer

* arrays of size 12 is created; then one integer array is created,

* all its elements are set to 5240, and finally the array is inserted

* at the cells 5 and 6 of the table column. Note that the created array

* must have exactly 12 elements, according to the declaration of the

* column.

*/

cpl_table_new_column_array(table, "Arrays of integers", CPL_TYPE_INT, 12);
array = cpl_array_new(12, CPL_TYPE_INT);
cpl_array_fill_window_int(array, 0, 12, 5240);
cpl_table_set_array(table, "Arrays of integers", 5, array);
cpl_table_set_array(table, "Arrays of integers", 6, array);

/*
* Since the array is physically copied to the table, it can (and it

* should!) be released:

*/

cpl_array_delete(array);

/*
* As with the character string column, invalidating a table cell

* means to destroy the copy of the array:

*/

cpl_table_set_invalid(table, "Arrays of integers", 5);

/*
* How to invalidate a single array element? Here is shown how to

* invalidate element 2 of array 6:

*/

array = cpl_table_get_array(table, "Arrays of integers", 6);
if (array)

cpl_array_set_invalid(array, 2);

/*
* The array read from the table should not be released, because it

* belongs to the table itself: cpl_table_get_array() just returns

* a handle to an internal object. All the memory associated to

* the table is released when the table is destroyed:

*/

cpl_table_delete(table);
...

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 48 of 99

cpl_end();
return 0;

}

It should be underscored that when any table column value is flagged asinvalid, it is lost: there is no
function to set an invalid element back to its original value. The only way to validate a table element is to
write a value to the corresponding position. It is important to be aware of this every time the data array of
a table column is exported to another process (e.g., a fitting routine), as in the following code section:

...
#include <cpl.h>
...
int main()
{

...
cpl_table *table;
float *data;
int size;
...

cpl_init(CPL_INIT_DEFAULT);

/*
* It is here assumed that the float column "Data" contains some

* invalid values. The data buffer of the table column is extracted

* and passed to an external fitting routine, but this is a

* mistake: in fact the buffer elements corresponding to an

* invalid element contain garbage.

*/

data = cpl_table_get_data_float(table, "Data");
size = cpl_table_get_nrow(table);

<result of the fit> = fit(data, size);

/*
* In case the external fitting routine would support a special

* "code" to identify invalid values that would be excluded from

* the fit - for instance, 0.0 - such code may be written to the

* internal data buffer before exporting:

*/

cpl_table_fill_invalid_float(table, "Data", 0.0);

/*
* In this way the invalid values would still remain flagged as

* invalid, but the exported data would not contain any garbage

* and the fitting routine would work properly:

*/

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 49 of 99

data = cpl_table_get_data_float(table, "Data");
size = cpl_table_get_nrow(table);

<result of the fit> = fit(data, size);

/*
* It is likely that a more common solution would be to physically

* remove any invalid value from a table before exporting the

* internal data buffer to the foreign routine. Here the table

* would be modified, and its size would be smaller than before:

* the function cpl_table_erase_invalid() removes from a table

* any row containing at least one invalid value.

*/

cpl_table_erase_invalid(table);
data = cpl_table_get_data_float(table, "Data");
size = cpl_table_get_nrow(table);

<result of the fit> = fit(data, size);
...
cpl_table_delete(table);
...

cpl_end();
return 0;

}

The most obvious example of exporting a column’s internal data buffer to anexternal process is when a ta-
ble is converted to FITS format and written to disk. This is done by the functioncpl_table_save(),
that converts any invalid column value into the FITS convention fornull values: invalid values in numer-
ical columns of typeCPL_TYPE_FLOAT and CPL_TYPE_DOUBLE are replaced by their ownNaN
bit pattern, while invalid character strings inCPL_TYPE_STRING columns are replaced by sequences
of blanks. The only exception is represented by invalid values in columns oftype CPL_TYPE_INT,
that are the only ones that need a specific code to be explicitly assigned to them. This can be realised
by calling the functioncpl_table_fill_invalid_int() for each table column of typeint
containing invalid values, and this should be done just before saving the table to FITS. The numerical
values identifying invalid integer column elements are written to the FITS keywords TNULLn (where n
is the column sequence number). Here is a simple example:

...
#include <cpl.h>
...
int main()
{

...
cpl_table *table;
int nrows = 10;
...

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 50 of 99

cpl_init(CPL_INIT_DEFAULT);

/*
* Create a table with a predefined length of 10 rows, create

* an integer column named "Numbers", and fill it with the value 3:

*/

table = cpl_table_new(nrows);

cpl_table_new_column(table, "Numbers", CPL_TYPE_INT);
cpl_table_fill_column_window_int(table, "Numbers", 0, nrows, 3);

/* Flag the "Numbers" column’s first and third cells as invalid */

cpl_table_set_invalid(table, "Numbers", 0);
cpl_table_set_invalid(table, "Numbers", 2);

/*
* Save to a FITS file, but give first the code 999 for the NULL

* values. The output FITS file header will contain the TNULL

* keyword (corresponding to this column) set to 999.

*/

cpl_table_fill_invalid_int(table, "Numbers", 999);
cpl_table_save(table, NULL, NULL, "output_table.fits", 0);
cpl_table_delete(table);
...

cpl_end();
return 0;

}

Beware that if valid column elements have the value identical to the chosennull-code, they will mistakenly
be considered invalid within the FITS convention.

3. Shifting position of column values

It may be useful in some cases to shift the positions of all the values of a given table column by a specified
amount. This is done with the table functioncpl_table_shift_column(). The most obvious
application of this functionality is in the computation of the finite differences of a sequence of numbers,
the discrete analogue of the differential operation.

In the following example the finite forward difference of the values in thefloat table column"Values"
is written to the newfloat table column"Forward differences" (error checking is omitted
for clarity):

...
#include <cpl.h>
...

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 51 of 99

int main()
{

...
cpl_table *table;
char input[] = "input_table.fits";
char output[] = "output_table.fits";
...

cpl_init(CPL_INIT_DEFAULT);

/*
* Load the table data from a given FITS file. We assume here

* that the table contains a float column named "Values".

*/

table = cpl_table_load(input, 1, 1);

/*
* A simple procedure: duplicate the input column, move the values

* of the duplicated column upward by one position, and finally

* subtract the original column values from the shifted ones,

* writing the result to the duplicated column itself.

*/

cpl_table_duplicate_column(table, "Forward differences", table, "Values");
cpl_table_shift_column(table, "Forward differences", -1);
cpl_table_subtract_columns(table, "Forward differences", "Values");

/*
* Write the new table to disk in FITS format (using a default FITS

* header), clean memory, then exit.

*/

cpl_table_save(table, NULL, NULL, output, 0);
cpl_table_delete(table);

cpl_end();
return 0;

}

In this example the last element of the"Forward differences" column turns out to be flagged as
invalid: the upward shift leaves the corresponding table cell empty, so that it is automatically excluded by
the subtraction operation.

Elements shifting is not supported for character string columns and for columns of arrays.

4. Selecting and extracting subtables from existing tables

A set of functions of thecpl_tablecomponent is used to select a number of rows from an existing table,
before copying them to a new table. The selection functions are used to apply simple selection criteria,

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 52 of 99

that can be logically combined to define more complex criteria. With the only exception of the function
cpl_table_not_selected(), all the selection functions names include the words_and_ or
or, to indicate how a given selection criterion should be combined with the existing row selection of a
given table. The_and_ tag indicates that between the existing selection and the new selection criterion
an intersectionis made, while the_or_ tag indicates that between the existing selection and the new
selection criterion aunion is made. The initial state of any table is that all of its rows are selected, and
therefore the first selection applied to a table would always be an_and_ selection, as shown in the
following example:

...
#include <cpl.h>
...
int main()
{

...
cpl_table *table;
cpl_table *subtable;
char input[] = "input_table.fits";
char output[] = "output_table.fits";
int selected;
...

cpl_init(CPL_INIT_DEFAULT);

/*
* Load the table data from a given FITS file. We assume here

* that the table contains a float column named "Day", a string

* column named "Month", and an integer column named "Year".

* This table begins with all rows selected, but in this

* example we ensure this explicitly:

*/

table = cpl_table_load(input, 1, 1);
cpl_table_select_all(table); /* Not really necessary... */

/*
* Here we select all rows containing the year 1958 and the year

* 2006; from those we select those having a month beginning with

* the letter "A" or "a", and a day between 5.5 (included) and 12.3

* (excluded). Finally, we add to all these any row containing

* the month "May" (no matter what year or day). Each function

* call returns the total number of selected rows, that in this

* example is always discarded, with the exception of the last

* call.

*/

cpl_table_and_select_int(table, "Year", EQUAL_TO, 1958);
cpl_table_or_select_int(table, "Year", EQUAL_TO, 2005);
cpl_table_and_select_string(table, "Month", EQUAL_TO, "^[Aa].*");
cpl_table_and_select_float(table, "Day", NOT_LESS_THAN, 5.5);

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 53 of 99

cpl_table_and_select_float(table, "Day", LESS_THAN, 12.3);
selected = cpl_table_or_select_string(table, "Month", EQUAL_TO, "May");

/*
* If some rows survived, a new table is created from the selected

* rows and it is saved to a FITS file:

*/

if (selected != 0) {
subtable = cpl_table_extract_selected(table);
cpl_table_save(subtable, NULL, NULL, output, 0);
cpl_table_delete(subtable);

}

cpl_table_delete(table);
cpl_end();
return 0;

}

Note that in matching strings the reference value is interpreted as a regular expression. All the se-
lection functions involving comparisons with a constant require that the constant has the same type of
the referred column. For this reason there is a function for each availablecolumn type. The functions
cpl_table_and_select() and cpl_table_or_select(), without any type suffix, are used
in the comparison of the values from two numerical columns.

5. Tables of images

As seen above, it is possible to define tables containing columns of arrays.In principle, each array can be
viewed as a storage for values that may be cast into more complex data structures – for instance images,
cubes, etc.. The concept ofcolumn dimensionhas been introduced for this purpose. In the following
example it is shown how to create a table containing a column made of 2-dimensional images (error
checking is omitted for clarity):

...
#include <cpl.h>
...
int main()
{

...
cpl_table *table;
cpl_array *array;
cpl_image *image;
int rows = 12; /* Number of images = rows in table */
int naxis = 2; /* Number of axis of each image */
int size[] = {25, 33}; /* Size of one image: x = 25, y = 33 */
int depth;
int i;

cpl_init(CPL_INIT_DEFAULT);

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 54 of 99

/*
* Create table

*/

table = cpl_table_new(rows);

/*
* Compute depth of column of arrays, and create column of images:

*/

depth = 1;
for (i = 0; i < naxis; i++)

depth *= size[i];

cpl_table_new_column_array(table, "Images", CPL_TYPE_FLOAT, depth);

/*
* Set the column dimensions: an array of two elements carries the

* size in x and y of each image

*/

array = cpl_array_new(naxis, CPL_TYPE_INT);

for (i = 0; i < naxis; i++)
cpl_array_set_int(array, i, size[i]);

cpl_table_set_column_dimensions(table, "Images", array);

cpl_array_delete(array);

/*
* Now allocate an external image of the appropriate sizes, and fill

* it with some data:

*/

image = cpl_image_new(size[0], size[1], CPL_TYPE_FLOAT);
cpl_image_fill_noise_uniform(image, -1, 1);

/*
* Copy the image to the column element 4

*/

array = cpl_array_wrap_float(cpl_image_get_data(image));
cpl_table_set_array(table, "Images", 4, array);
cpl_array_unwrap(array);
cpl_image_delete(image);

/*
* At the end the array can (and must) be unwrapped, since it was

* physically copied to the table. If efficiency reasons make this

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 55 of 99

* duplication of data impracticable, the last two calls may be

* replaced by:

*
* cpl_table_get_data_array(table, "Images")[4] = array;

*
* where the created array is directly "plugged" into the appropriate

* column element. Of course in this case cpl_array_unwrap() should

* not be called, and cpl_image_delete(image) should not be used,

* because it would destroy data that belong also to the table.

* cpl_image_unwrap(image) should be used instead, to destroy the

* image data wrapper.

*/

/*
* Here is an example on how the image could be extracted from the

* corresponding table element: we assume here that the column

* dimensions are not known.

*/

naxis = cpl_table_get_column_dimensions(table, "Images");
if (naxis == 2) {

for (i = 0; i < naxis; i++)
size[i] = cpl_table_get_column_dimension(table, "Images", i);

array = cpl_table_get_array(table, "Images", 4);
image = cpl_image_wrap_float(size[0], size[1],

cpl_array_get_data_float(array));

/*
* Process image...

*/

...

/*
* Cleanup when done. Note that the array must not be released.

*/

cpl_image_unwrap(image);
}

cpl_table_delete(table);

cpl_end();
return 0;

}

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 56 of 99

5.2.5 Statistics

Thecpl_statsobject provided in CPL is a container of different statistics that have beencomputed. They may
have been computed on an image, a matrix, a table column or several table columns, or from many other objects.

For the moment, only functions to create this statistics object from an image or an image window are provided.

Thecpl_statsobject must be deallocated withcpl_stats_delete(), and can be saved in a text file withcpl_stats_dump().

5.2.6 Vectors

In the Common Pipeline Library, the vector component is namedcpl_vector. It is a simple structure with
an array ofdoublevalues and a size. This basic object can be used to build more complicated types, such
as a complex array (combination of a vector for the real values and a vector for the imaginary values) or a
1-dimension function (see 5.2.7).

To create or delete acpl_vectorobject, you must use the dedicated functionscpl_vector_new()andcpl_vector_delete().

Here is an example that shows how acpl_vectorcan be used to load a values list from a text file, to subtract the
mean and write the result into another text file:

int main()
{

cpl_vector * vect ;
double mean ;
FILE * out ;

cpl_init(CPL_INIT_DEFAULT);

/*
* Load values from an ASCII file and store it in a cpl_vector.

* myfile.txt contains a list of the vector values (one per line)

*/
vect = cpl_vector_load("myfile.txt");

/* Compute the mean of the vector */
mean = cpl_vector_get_mean(vect);

/* Subtract the mean */
cpl_vector_subtract_scalar(vect, mean);

/* Write out the result to a file */
out = fopen("output_file.txt", "w");
cpl_vector_dump(vect, out);
fclose(out);

/* Delete */
cpl_vector_delete(vect);

/* Return */

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 57 of 99

cpl_end();
return 0;

}

Some of the functionalities provided by this component are :

• Vector constructor and destructor.

• Routines to read/write a vector from/to a file.

• Sorting functionality.

• Basic arithmetic operations between vectors or between a vector and a constant.

• Statistics computed on a vector (find the minimum, the maximum, calculate the mean, ...).

• Derive the low frequency signal from a vector.

• Vectors comparison methods.

The functionalities implemented at the moment are basic. The aim is not to try to forsee every conceivable func-
tion that could be needed. If new requirements come, then the dedicated functions will be designed accordingly.
This approach keeps theCommon Pipeline Libraryas small as possible, but not excluding the possibility of later
extension.

5.2.7 Bivectors

Thecpl_bivectorobject is simply composed with twocpl_vectorobjects. Its goal is typically to contain a list of
positions in an image, a list of offsets, a list of points defining a one-dimensionsignal, etc...

The functionality provided by the bivector methods includes:

• A constructor and a destructor.

• Accessor functions to its two vectors.

• Read/write functionalities.

• Interpolation function.

The accessor functions give access to the vectors, so that all thecpl_vectormethods are available to the bivector
members.

5.2.8 Polynomials

A n dimensions polynomial object (cpl_polynomial) is provided in CPL, with several methods to create it,
deallocate it, set its coefficients, and do some simple operations on it.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 58 of 99

5.2.9 Matrices

Matricesare generally defined as a set of numbers arranged in a rectangular grid of rows and columns. The
cpl_matrixcomponent only supports sets of numbers in double precision.

The cpl_matrix is an opaque object; access and manipulation of matrix data is done through aninterface of
methods and accessors designed for that purpose. Such methods are intended to support basic matrix handling,
ensuring optimal performance and memory usage. Besides, a pointer to the data buffer of matrix elements
is available whenever the developer finds that a particular algorithm is missingfrom the library, or specific
performance requirements need to be fulfilled. The internal data buffer of a cpl_matrix is a simple array of
double values, where the first value refers to the upper left position of the matrix,and the last value to the
lower right position. The values are listed row by row, with each row running from left to right and starting with
the top row. The elements of acpl_matrixare indexed starting from0, i.e., the first matrix element at the upper
left position has index0, 0.

A cpl_matrixmay be created with one of its specific constructors, and used for storageand handling of in-
formation that was generated within a program. The code may look like this (error checking is omitted for
clarity):

...
#include <cpl.h>
...
int main()
{

...
cpl_matrix *matrix;
double *data_buffer;
int number_of_rows = 20;
int number_of_columns = 4;
double value;
...

cpl_init(CPL_INIT_DEFAULT);

...
matrix = cpl_matrix_new(number_of_rows, number_of_columns);
...

/* Copy the value of a matrix elements to another location */

value = cpl_matrix_get(matrix, 0, 3);
cpl_matrix_set(matrix, 4, 1, value);
...

/*
* Direct access to the matrix data buffer

*/

data_buffer = cpl_matrix_get_data(matrix);
...

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 59 of 99

cpl_matrix_delete(matrix);
...

cpl_end();

return 0;
}

Currentlycpl_matrixsupports the following operations with matrices:

• Creating different types of matrices, duplicating matrices, etc.

• Reading and writing matrix elements.

• Transposing, shifting, removing row/column intervals, and performing anyother elementary row/column
operations.

• Extracting submatrices, expanding existing matrices, merging of matrices.

• Performing arithmetic, computing scalar products, determinants, etc.

• Computing statistical quantities.

• Sorting of matrix rows or columns, gaussian elimination, etc.

• Solving systems of linear equations.

• Inversion.

The methods to support these and other operations are all described in detail in theCPL Reference Manual[1],
but in the following some of the functionalities are explained with the help of one single example, namely the
solution of a redundant linear system,i.e., a system with too many linear equations or too many unknowns. In
this example a rather simplistic approach is applied: note that the implementation of thehigher-level function
cpl_matrix_solve_normal() is by far more efficient and sofisticated.

The theory: given the matrix of the linear system coefficientsA, and the non-homogeneous termB, the system

Ax = B

is defined, wherex is the column matrix of the unknowns. The pseudo-inverse solution of this system (in a
least-square sense) is given by

x = (AT
A)−1

A
T
B

In the following code, a system of 100 equations in 10 unknowns is solved:

...
#include <cpl.h>
...
int main()
{

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 60 of 99

...
cpl_matrix *coeff;
cpl_matrix *t_coeff;
cpl_matrix *nonhomo;
cpl_matrix *solution;
cpl_matrix *m1;
cpl_matrix *m2;
cpl_matrix *m3;
int equations = 100;
int unknowns = 10;
int i, j;
...

cpl_init(CPL_INIT_DEFAULT);
...

/* Creating the coefficient and the non-homogeneous term matrices */

coeff = cpl_matrix_new(equations, unknowns);
nonhomo = cpl_matrix_new(equations, 1);

/*
* The matrices are filled in some way with the appropriate data,

* for instance using the function cpl_matrix_set():

*/

...
cpl_matrix_set(coeff, i, j, value);
...
cpl_matrix_set(nonhomo, i, 1, value);
...

/* Now that the matrices are available we can apply the theory */

t_coeff = cpl_matrix_transpose_create(coeff);
m1 = cpl_matrix_product_create(t_coeff, coeff);
m2 = cpl_matrix_invert_create(m1);
if (m2 == NULL) /* Singular matrix */

return 1;
m3 = cpl_matrix_product_create(t_coeff, nonhomo);
solution = cpl_matrix_product_create(m2, m3);

/* Cleanup */

cpl_matrix_delete(coeff);
cpl_matrix_delete(nonhomo);
cpl_matrix_delete(t_coeff);
cpl_matrix_delete(m1);
cpl_matrix_delete(m2);
cpl_matrix_delete(m3);

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 61 of 99

/* Here the solution is available and can be used */

...

/* Finally, also the solution matrix is deleted and the program closed */

cpl_matrix_delete(solution);
...

cpl_end();
return 0;

}

5.2.10 Messaging and logging

A simple component for displaying informative text to terminal and for maintaininglogfiles is available in the
CPL. The following operations are supported:

• Controlling whether or not messages are written to the terminal and/or to a logfile.

• Optionally adding informative tags to messages.

• Setting width for message line wrapping.

• Controlling the message indentation level.

• Filtering messages according to their severity level.

Messages may be printed using any of the following functions:

• cpl_msg_debug()

• cpl_msg_info()

• cpl_msg_warning()

• cpl_msg_error()

Choosing from these functions means assigning a level of severity to a given message. The messaging system
can then be set to display just messages having sufficient severity, choosing a verbosity level from the following
list:

• CPL_MSG_DEBUG

• CPL_MSG_INFO

• CPL_MSG_WARNING

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 62 of 99

• CPL_MSG_ERROR

• CPL_MSG_OFF

The highest verbosity level of the messaging system isCPL_MSG_DEBUG. That would ensure thatall the mes-
sages are printed. The verbosity would progressively decrease through the levelsCPL_MSG_INFO,CPL_MSG_
WARNING, andCPL_MSG_ERROR, where only messages served by thecpl_msg_error() function would
be printed. The lowest verbosity level,CPL_MSG_OFF, would inhibit the printing of any message to the termi-
nal.

To output the messages to a logfile, a call tocpl_msg_set_log_level() is also required, while output to
terminal is automatically enabled at a verbosity levelCPL_MSG_INFO; the functioncpl_msg_set_level()
may be used just to modify this default verbosity. The name of the created log file may be set with the func-
tion cpl_msg_set_log_name() before callingcpl_msg_set_log_level(), otherwise it is left to
a default ".logfile".

Three different tags may be attached to any message:time, domain, andcomponent. Thetime tag is the time of
the printing of the message, and can optionally be turned on or off with the functionscpl_msg_set_time_on()
and _off(). Thedomaintag is an identifier of the main program (typically, a pipeline recipe), and can be
optionally turned on or off with the functionscpl_msg_set_domain_on() and _off(). Finally, the
componenttag is used to identify a component of the program (typically, a function), and can be optionally
turned on or off with the functionscpl_msg_set_component_on() and _off(). However, thecom-
ponenttag is always shown when the verbosity level is set toCPL_MSG_DEBUG.

As a default, none of the above tags are attached to messages sent to the terminal, but all the tags are always
shown in messages sent to the logfile. A further tag, theseveritytag, can never be turned off. This tag depends
on the function used to print any given message. The tags are prepended to all messages, and are not affected by
the message indentation controlled by the functionscpl_msg_indent(), cpl_msg_indent_more(),
cpl_msg_indent_less(), and cpl_msg_set_indent_step().

The messaging component takes care of breaking long lines of text to the actual terminal width or to a specific
maximum value, and will always add a new line character at the end of any message if it is missing. If the width
of the output device cannot be determined, lines of text are not splitted when written to output. If line breaking
is not wanted, the functioncpl_msg_set_width() should be called specifying a non positive width. To
enforce breaking a line of text, new line characters can always be inserted within the message.

In the following, an illustration of writing messages to terminal and to a logfile is given.

...
#include <cpl.h>
...
int main()
{

...
char domain[] = "Example";
char component[] = "messaging";
...

cpl_init(CPL_INIT_DEFAULT);

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 63 of 99

/*
* Initialising the messaging system. Messages are sent both to

* terminal and to logfile.

*/

cpl_msg_set_time_on();
cpl_msg_component_on();
cpl_msg_set_domain(domain);
cpl_msg_set_domain_on();
cpl_msg_set_level(CPL_MSG_WARNING);
cpl_msg_set_log_level(CPL_MSG_DEBUG);

/*
* Printing something...

*/

cpl_msg_debug(component, "Log is written to %s", cpl_msg_log_file());
cpl_msg_info(component, "This is message number %d of %d", 2, 4);
cpl_msg_warning(component, "This is a %s message", "warning");
cpl_msg_error(component, "This is the final error message");
...

cpl_end();

return 0;
}

A complete description of the functions available in the messaging component is given in the on-lineCPL
Reference Manual[1].

5.2.11 Error handling

This component provides a means to detect, display and recover from errors in CPL-functions. It also allows
the CPL API programmer to write functions that sets errors.

A CPL error consists of the following information:

• The CPL error code, anenumthat defines the type of error, similarly to theerrnovariable of the standard
C library. The possible values of CPL error code includeCPL_ERROR_NONE, which equals zero.

• A human-readable text describing the type of error, optionally followed bymore details about the specific
error. This text may be used by the caller for error reporting.

• The name of the function in which the error occured.

• The name of the source file in which the error occured.

• The line number where the error occured in that source file.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 64 of 99

The CPL errorstate consists of the (possibly empty) sequence of CPL errors that has occurred and from which
no recovery has been done.

The most recent CPL error can be queried with these functions:

• cpl_error_get_code().

• cpl_error_get_message().

• cpl_error_get_function().

• cpl_error_get_file().

• cpl_error_get_line().

• cpl_error_get_where(), which combines the location information from the above three functions
into a single, colon-separated string.

CPL functions modify the CPL error code as follows:

• The CPL error code is initialized by the call tocpl_init(). If no error happens incpl_init(), then
cpl_error_get_code() returnsCPL_ERROR_NONE. (If an error does happen incpl_init(),
then it is unlikely that the application can do anything useful with CPL).

• If no error occurs in other CPL functions, then the CPL errorstate and therefore the return value of
cpl_error_get_code() is unchanged.

• If an error does happen in a CPL function, a new CPL error is created and appended to the CPL errorstate
and the return value ofcpl_error_get_code() is updated accordingly.

• The behaviour of all CPL functions, except those that implement the CPL error handling, is not affected
by the CPL errorstate, i.e. the CPL errorstate is not an input to these functions. This means that if an error
has happened, CPL functions can still be called to get information about theconditions that have led to
the error.

In general CPL functions do not themselves display any error messages, instead it is left to the caller to decide
if and how to display error messages.

If cpl_error_get_code() returnsCPL_ERROR_NONE the CPL errorstate is said to be empty or clean. In
this case calls to the other accessors of the CPL error handling are still allowed, but they provide no meaningful
information.

Some CPL functions are of typecpl_error_code. A function of this type returnsCPL_ERROR_NONE if it
did not create a new CPL error. If it did create one or more new CPL errors, it returns the CPL error code of the
most recent error.

Other CPL functions have return values that indicate if a new CPL error has been created, e.g. most of the CPL
functions that return a pointer.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 65 of 99

A third group of CPL functions cannot indicate with their return value if an error ocurred. If the CPL errorstate
is clean prior to a call to such a function, thencpl_error_get_code() can indicate if an error was created.
This method cannot be used if the CPL errorstate contains errors prior to the call.

In this case the most general method for error detection has to be used. This consists of defining a variable of
typecpl_errorstate to the value of the errorstate prior to the call, and then comparing this value to the
errorstate after the call. Thus to robustly detect whether an error has happened in a call to the function that
returns the minimum pixel value in a CPL image, one could do:

cpl_errorstate prestate = cpl_errorstate_get();
double valmax = cpl_image_get_max(image);

if (cpl_errorstate_is_equal(prestate)) {
/* No error happened in cpl_image_get_max(). */

} else {
/* An error happened in cpl_image_get_max(). */

}

In some cases a CPL application can recover from a (sequence of) CPLerror(s).

There are two methods for doing this.

The first and simplest consists of a single call tocpl_error_reset(), which will empty the entire CPL
errorstate and thus cause a subsequent call tocpl_error_get_code() to returnCPL_ERROR_NONE. This
method can be used if the CPL errorstate is guaranteed to be clean prior to thecode that created the error(s).

The second and more general method consists of defining a variable of typecpl_errorstate to the value
of the errorstate prior to the code from which recovery is possible, and then setting the errorstate back to this
value after the execution of the code from which the recovery is to be done.

For example:

cpl_errorstate prestate = cpl_errorstate_get();

my_function();

if (cpl_errorstate_is_equal(prestate)) {

/* No error happened in my_function() */
/* - thus no recovery is needed

} else {

/* Error(s) happened in my_function(). */
/* - set the errorstate back to what it was before and discard the

information about the errors that happened in my_function(). */

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 66 of 99

cpl_errorstate_set(prestate);

}

assert(cpl_errorstate_is_equal(prestate));

The CPL errorstate can contain a limited number of CPL errors. This number isdefined by the cpp-macro
CPL_ERROR_HISTORY_SIZE which currently has a default size of 20. The default size of
CPL_ERROR_HISTORY_SIZE ensures that no CPL function overflows the errorstate.

If more thanCPL_ERROR_HISTORY_SIZE CPL errors are appended to the CPL errorstate, then the informa-
tion about the oldest CPL errors is lost. This has implications for error recovery, which are best explained with
an example that includes the above code example. Suppose that CPL has been built with the default value (20)
for CPL_ERROR_HISTORY_SIZE, that the aboveprestate has been defined when the errorstate contains
5 CPL errors, and that the abovemy_function() appends 30 CPL errors to the CPL errorstate.

After the recovery, the CPL errorstate again consists of 5 errors, i.e. the above assertion,
cpl_errorstate_is_equal(prestate), still holds. Also, when prestate was defined,
cpl_error_get_code() would return a value different fromCPL_ERROR_NONE. At the point of the
aboveassert(), cpl_error_get_code()would still return a value different fromCPL_ERROR_NONE.

The information that has been lost at the recovery are:

• cpl_error_get_code() returnsCPL_ERROR_UNSPECIFIED regardless of what it returned when
prestate was defined.

• The text message of the error has been lost.

• All location information about the error has been lost.

If further recovery is done back to an even older error, the same holdsfor that error.

The sequence of CPL errors in a non-empty CPL errorstate can be displayed usingcpl_errorstate_dump().
To display the errors that have occurred after a certain point one coulddo:

cpl_errorstate prestate = cpl_errorstate_get();

my_function();

if (cpl_errorstate_is_equal(prestate)) {
/* No error happened in my_function() */

} else {
/* Error(s) happened in my_function(). */
/* Dump them all in chronological order, oldest first */
cpl_errorstate_dump(prestate, CPL_FALSE, cpl_errorstate_dump_one);

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 67 of 99

}

cpl_errorstate_dump() takes a boolean, if this evaluates toCPL_TRUE, then the order of the dump
is reversed.cpl_errorstate_dump() takes a function pointer, each CPL error is dumped with a call
to that function. To get the default dump, the caller may usecpl_errorstate_dump_one or NULL.
cpl_errorstate_dump_one dumps using the CPL messaging system at error level.

The CPL application may define its own functions for dumping a CPL error, theCPL application programmer
is referred to the documentation ofcpl_errorstate_dump_one() for more details about this.

If the dump consists of more thanCPL_ERROR_HISTORY_SIZE errors, then all but the newest
CPL_ERROR_HISTORY_SIZEwill be displayed with the error codeCPL_ERROR_UNSPECIFIED and empty
text and location information.

The currently available CPL error codes are:

CPL_ERROR_NONE No error

CPL_ERROR_UNSPECIFIED An unspecified error

CPL_ERROR_DUPLICATING_STREAM Cannot duplicate output stream

CPL_ERROR_ASSIGNING_STREAM Cannot associate a stream with a file descriptor

CPL_ERROR_FILE_IO File access permission denied

CPL_ERROR_BAD_FILE_FORMAT Bad file format

CPL_ERROR_FILE_ALREADY_OPEN File already open

CPL_ERROR_FILE_NOT_CREATED File cannot be created

CPL_ERROR_FILE_NOT_FOUND File not found

CPL_ERROR_DATA_NOT_FOUND Data not found

CPL_ERROR_ACCESS_OUT_OF_RANGE Access beyond boundaries

CPL_ERROR_NULL_INPUT Null input data

CPL_ERROR_INCOMPATIBLE_INPUT Input data do not match

CPL_ERROR_ILLEGAL_INPUT Illegal input

CPL_ERROR_ILLEGAL_OUTPUT Illegal output

CPL_ERROR_UNSUPPORTED_MODE Unsupported mode

CPL_ERROR_SINGULAR_MATRIX Singular matrix

CPL_ERROR_DIVISION_BY_ZERO Division by zero

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 68 of 99

CPL_ERROR_TYPE_MISMATCH Type mismatch

CPL_ERROR_INVALID_TYPE Invalid type

CPL_ERROR_CONTINUE The iterative process did not converge

CPL_ERROR_EOL A user-defined error

CPL_ERROR_EOL is guaranteed to not be used within CPL itself, and to be greater than any of the CPL other
error codes.CPL_ERROR_EOL can therefore be used by the CPL application to extend the error handling with
new error codes.

Here is an example of a program with CPL error handling.

#include <cpl.h>

cpl_error_code my_func(void);

int main(void)
{

cpl_errorstate prestate;

cpl_init(CPL_INIT_DEFAULT);

prestate = cpl_errorstate_get();

if (my_func() != CPL_ERROR_NONE) {
/* At this point error recovery is not possible

- instead dump the error state. */

cpl_msg_error(cpl_func, "my_func() failed:");
cpl_errorstate_dump(prestate, CPL_FALSE, cpl_errorstate_dump_one);

}

return cpl_error_get_code() ? EXIT_FAILURE : EXIT_SUCCESS;
}

cpl_error_code my_func(void)
{

/* Declarations needed for error handling */
cpl_errorstate prestate = cpl_errorstate_get();
cpl_error_code status;

/* Other declarations */
cpl_matrix *matrix = cpl_matrix_new(10, 10);
cpl_matrix *inverse;
double mean;

/*

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 69 of 99

* Propagate the error from a function of type cpl_error_code.

*/

status = my_matrix_fill(matrix);
if (status != CPL_ERROR_NONE) {

/* Free memory and propagate the unrecoverable error */
cpl_matrix_delete(matrix);
return cpl_error_set_message(cpl_func, cpl_error_get_code(),

"Could not fill matrix");
}

/*
* Propagate the error in a function returning a valid pointer

* on success, or a NULL in case of failure.

*/

inverse = cpl_matrix_invert_create(matrix);
if (inverse == NULL) {

/* Free memory and propagate the unrecoverable error */
cpl_matrix_delete(matrix);
return cpl_error_set_message(cpl_func, cpl_error_get_code(),

"Could not invert matrix");
}

/*
* Propagate error in a function whose return value cannot

* indicate the error status.

*/

mean = cpl_matrix_get_mean(matrix);
if (!cpl_errorstate_is_equal(prestate)) {

/* Free memory and propagate the unrecoverable error */
cpl_matrix_delete(matrix);
cpl_matrix_delete(inverse);
return cpl_error_set_message(cpl_func, cpl_error_get_code(),

"Could not compute mean of matrix");
}

/*
* Handle failure of a function of type cpl_error_code.

* A switch may be used to catch specific error codes, which

* can be handled. In this example, the errors

* CPL_ERROR_DIVISION_BY_ZERO and CPL_ERROR_CONTINUE can be handled,

* while others cannot. Note that, for those errors that can be

* handled the errors are discarded from the CPL error state.

*/

status = my_matrix_correction(matrix, inverse, mean);

switch (status)
{

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 70 of 99

case CPL_ERROR_NONE:
break; /* No action needed */

case CPL_ERROR_DIVISION_BY_ZERO:
cpl_msg_warning(cpl_func, "Correction caused division by zero, "

"matrix correction skipped.");
cpl_errorstate_set(prestate); /* Recover from error(s) */
break;

case CPL_ERROR_CONTINUE:
cpl_msg_warning(cpl_func, "Correction did not converge, "

"trying robust method.");

cpl_errorstate_set(prestate); /* Recover from error(s) */

my_matrix_correction_robust(matrix, mean);
assert(cpl_errorstate_is_equal(prestate));

break;

default:
/* Free memory and propagate the unrecoverable error */
cpl_matrix_delete(matrix);
cpl_matrix_delete(inverse);

return cpl_error_set_message(cpl_func, cpl_error_get_code(),
"Correction caused an unexpected error");

}

/* Free memory and return successfully */
cpl_matrix_delete(matrix);
cpl_matrix_delete(inverse);

return CPL_ERROR_NONE;

}

The functions to support error handling are all described in detail in the onlineCPL Reference Manual[1].

5.2.12 Properties

A cpl_propertyis a name/value pair used for storing meta-data. Although this facility is made available to
the programmer for implementing his or her own data structures, it is expected that the “property list” facility
would be used in most applications requiring this sort of functionality (see Section 5.2.13). Note the difference
between acpl_property(an atomic variable storage mechanism) and acpl_propertylist(which organises and
stores complete sets of associated variables).

Thecpl_propertysupports several different primitive datatypes for the stored value. Inparticular, all the types

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 71 of 99

foreseen by the FITS standard for header keywords are provided.A single complex datatype, namely that of
strings, is also available.

As the values of properties are stored in binary form, a property can be used as lossless storage for such named
parameters within the application. This eliminates the concern of loss of information due to conversion to, for
example, text strings, etc..

In addition to the name and value, it is possible to associate a descriptive comment with the property. This
comment could be used to store explanatory text, information about units or whatever is required. Note that
there is no explicit field for the units within the property itself.

5.2.13 Property lists

The property list facility provided by the CPL offers a way to store meta-dataas a sequence of name/value
pairs. Although the internals of thecpl_propertylistmake use of thecpl_propertytype (see Section 5.2.12), the
property list interface completely hides this detail, and allows the user to manipulate his or her data through a
single interface. Thus, unlike parameter lists, it is not possible (or even necessary) to extract/insert properties
from the property list.

Thecpl_propertylistwas designed for supporting the FITS header information. Indeed, it is possible, using a
single function, to load a header file into a property list, given the filename andthe number of the extension.

To obtain a value from a property list, the list is queried by looking for the value’s name as shown below. New
values can be added to a property list and entries can be erased.Propertieswhich belong to a property list can
be extracted using the functionscpl_propertylist_get_property() and its constant related version,
cpl_propertylist_get_property_const().

#include <cpl.h>

...

int main()
{

...

int i, status;
float f;
char *s;

cpl_propertylist *list;

...

cpl_init(CPL_INIT_DEFAULT);

...

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 72 of 99

list = cpl_propertylist_new();

...

cpl_propertylist_append_int(list, "MyInt", 42);
cpl_propertylist_append_float(list, "MyFloat", 1.e-6);
cpl_propertylist_append_string(list, "MyString", "text");

...

i = cpl_propertylist_get_int(list, "MyInt");
f = cpl_propertylist_get_float(list, "MyFloat");
s = cpl_propertylist_get_string(list, "MyString");

...

cpl_propertylist_delete(list)

...

cpl_end();

return 0;

}

Within the CPL, property lists are used to store the headers of FITS files. The translation from and to a FITS
header is done on the fly.

5.2.14 Plotting

For a number of CPL objects, we provide simple plotting functionalities by usinggnuplot internally. In order
for these functionalities to work properly, the only requirement is to havegnuplotinstalled on your system. If it
is not, the function will not set any error, but will just remain without any effect.

As an example, the following code shows how to overplot several columns of the table (see Figure 11) produced
by the CPLDRScpl_wlcalib_xc_best_poly()function.

int example_plot_spc_table(const cpl_table * spc_table)
{

cpl_vector ** vectors ;

/* Test entries */
if (spc_table == NULL) return -1 ;

/* Initialise */
nsamples = cpl_table_get_nrow(spc_table) ;

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 73 of 99

Figure 11: Table to plot

vectors = cpl_malloc(4*sizeof(cpl_vector*)) ;
vectors[0] = cpl_vector_wrap(nsamples,

cpl_table_get_data_double((cpl_table*)spc_table,
"Wavelength"));

vectors[1] = cpl_vector_wrap(nsamples,
cpl_table_get_data_double((cpl_table*)spc_table,

"Catalog Initial"));
vectors[2] = cpl_vector_wrap(nsamples,

cpl_table_get_data_double((cpl_table*)spc_table,
"Catalog Corrected"));

vectors[3] = cpl_vector_wrap(nsamples,
cpl_table_get_data_double((cpl_table*)spc_table,

"Observed")) ;

irplib_vectors_plot("set grid;set xlabel ’Wavelength (nm)’;",
"XC 1-Initial cat/2-Corrected cat/3-Observed’ w lines",
"", (const cpl_vector **)vectors, 4);

cpl_vector_unwrap(vectors[0]) ;
cpl_vector_unwrap(vectors[1]) ;
cpl_vector_unwrap(vectors[2]) ;
cpl_vector_unwrap(vectors[3]) ;
cpl_free(vectors) ;
return 0 ;

}

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 74 of 99

The figure 12 shows how appears the plot generated by the example function when used on the example table.

Figure 12: Effect of the plotting function with the table

5.3 The CPL interfaces inlibcplui

5.3.1 Frames

A cpl_frameis a way of associating attributes to files. It is used as a communication method between a data
reduction organiser and a data reduction task. Because multiple data files are often required in the processing
of a single observation (dark, flat, bias, target, etc.), it is often necessary to associate these different files for any
data reduction task. The frame component of the CPL makes this possible.

Among the data set attributes are the filename to which the frame is associated, its type, the group to which it
belongs and, if the frame describes a processing product, possibly a processing level.

The cpl_framecomponent provides the functions to set and query frame attributes, as shown in the example
below:

#include <cpl.h>

...

cpl_frame *add(cpl_image *image1, cpl_image *image2)
{

cpl_frame *product_frame;

cpl_image_add(image1, image2);

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 75 of 99

product_frame = cpl_frame_new();

cpl_frame_set_filename(product_frame, "image12.fits");
cpl_frame_set_tag(product_frame, "ADDED_IMAGE");
cpl_frame_set_type(product_frame, CPL_FRAME_TYPE_IMAGE);
cpl_frame_set_group(product_frame, CPL_FRAME_GROUP_PRODUCT);
cpl_frame_set_level(product_frame, CPL_FRAME_LEVEL_FINAL);

return product_frame;

}

5.3.2 Frameset

A frameset is just a container for frames. Frames can be added to a frameset and can be looked up by a tag or by
sequentially traversing the container. The frameset is part of the CPL recipe plugin interface (see Section 3.5).
In this context, it is used to pass input files to a data reduction task and obtain the products from it after it has
been completed.

#include <cpl.h>

...

cpl_frameset *subtract_bias(cpl_image *image, cpl_frameset *set)
{

...

cpl_frame *bias_frame,
cpl_frame *result_frame;
cpl_image *bias;

...

bias_frame = cpl_frameset_find(set, "BIAS");
bias = cpl_image_load(cpl_frame_get_filename(bias_frame),

CPL_TYPE_DOUBLE, 0, 0);
...

result_frame = cpl_frame_new();

...

cpl_frameset_insert(set, result_frame);

...

return set;

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 76 of 99

}

5.3.3 Parameters

A parameter is a datatype with an associated name, description and value-checking. Parameters are designed to
handle monitor/control data and they provide a standard way to pass for instance command line information to
different components of an application.

The implementation supports three classes of parameters: a plain value, a value within a given range, or a value
as part of an enumeration. When a parameter is created it is created for a particular value type. In the latter two
cases, validation is performed whenever the value is set.

The type of a parameter’s current and default value may be: boolean, integer, double or string.

In addition to the name, parameters provide an associated context. Parameternames must be unique — they
define the identity of a given parameter. The context is used to associate parameters together. A context, for
example, may be the name of the part of the application, from where the parameter value originated.

Parameters were designed to be used by the PDRM interface, as a method ofpassing command data between a
host application and a recipe.

Parameters vary from properties, in that they have these associated dataconstraints and additional descriptive
parameters. While properties are primitive units of data storage without any overhead, parameters offer self-
description and data integrity checking which are essential for dealing with interfaces within the application.

Parameters may be grouped using the "parameter list" component. A parameterlist, cpl_parameterlist, is simply
a mechanism for grouping lists of parameters. It provides a convenient way for passing large numbers of
parameters to a function. For instance, it is used in the plugin interface to pass the parameters a recipe accepts
from the plugin to the calling application and vice versa.

It is possible to extract/insert parameters within parameter lists. For a complete documentation of the parameter
component please refer to the onlineCPL Reference Manual[1].

#include <cpl.h>

...

cpl_parameterlist *make_parameter_list(int i, double d, const char *s)
{

cpl_parameterlist *plist = cpl_parameterlist_new();
cpl_parameter *p;

p = cpl_parameter_new_value("config.integer_value",
CPL_TYPE_INT,
"An integer value",
"config",
0);

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 77 of 99

cpl_parameter_set_int(p, i);
cpl_parameterlist_append(plist, p);

p = cpl_parameter_new_range("config.double_range",
CPL_TYPE_DOUBLE,
"A range of doubles",
"config",
0.5, 0., 1.);

cpl_parameter_set_double(p, d);
cpl_parameterlist_append(plist, p);

p = cpl_parameter_new_enum("config.string_enum",
CPL_TYPE_STRING,
"An enumeration of strings",
"config",
"one", 3, "one", "two", "three");

cpl_parameter_set_string(p, s);
cpl_parameterlist_append(plist, p);

return plist;

}

5.4 Standard data reduction algorithms inlibcpldrs

The CPLlibcpldrs library provides standard astronomical data reduction algorithms.

5.4.1 Apertures

Thecpl_apertobject can contain information or statistics of a list of objects or zones in an image. The function
that creates this object iscpl_apertures_new_from_image(). It takes as input the image in which the objects are,
and a labels image (an integer image) that defines the different zones or objects positions in the input image.
This labels image has the same size as the input image and identifies with its labels the different zones, negative
values identify the background.

So if the labels image contains pixels with n different positive values,cpl_apertures_new_from_image()will
create acpl_apertobject containing n different apertures with various statistics computed on each of them (see
Figure 13).

The objects detection itself is done by the computation of the labels image, this hereis just statistics computation
of the already specified detected objects.

However, this module provides a very simple objects detection function namedcpl_apertures_extract(). You
just need to pass a list of sigma values (in acpl_vector()), and the function will apply a sigma threshold to find

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 78 of 99

 1 255.9 102.1 255.9 102.0 993 8.76 1.21 4.01 3.65 1.88 3980.71
 2 409.1 152.9 409.1 153.0 733 6.26 1.25 3.22 3.08 1.15 2357.11
 3 203.8 203.9 204.0 204.0 1408 16.69 1.22 6.33 5.19 3.98 8914.26
 4 102.3 358.0 102.2 357.9 365 3.99 1.23 2.46 2.47 0.65 896.80
 5 52.3 358.6 52.3 358.6 33 2.62 1.27 2.03 2.01 0.44 66.88
 6 356.5 358.5 356.5 358.4 16 2.38 1.26 1.82 1.77 0.37 29.13
 7 255.8 409.3 255.8 409.3 258 3.61 1.22 2.17 2.14 0.59 560.59
 8 153.3 405.1 153.2 405.1 45 2.81 1.22 2.14 2.21 0.41 96.42
 9 459.9 460.2 459.9 460.1 828 6.95 1.22 3.47 3.27 1.39 2875.25

X Y XCENTROID YCENTROID pix max min mean med dev flux

cpl_apertures_new_from_image()

Figure 13: Usage ofcpl_apertures_new_from_image()

objects in the passed image. It will internally create the labels image, call thecpl_apertures_new_from_image()
function and return thecpl_apertobject. If nothing is detected with the first sigma value, the second is used
and so on until something is detected.cpl_apertures_extract_sigma()does it with only one passed sigma, and
cpl_apertures_extract_window()does it on a window of the image.

Besides, this module provides functions to sort the different apertures according to the number of pixels, the
maximum value or the flux.

5.4.2 Detectors

This part contains high-level functions commonly used to get detector characteristics like the non-linearity or
the read-out noise, or to correct detector defaults like the bad pixels.

1. Read-out noise computation

The noise computed by the functionscpl_flux_get_noise_window()andcpl_flux_get_noise_ring()is the
median of the standard deviation values computed in a number of small windows scattered optimally
using a Poisson law in the specified region of the input image (a window or a ring).

2. Bad pixels reconstruction

Thecpl_detector_interpolate_rejected()recomputes the bad pixels of an image by using the good pixels
in the neighborhood. An iterative procees is used until all bad pixels havebeen corrected.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 79 of 99

5.4.3 Geometrical transformations

The functions currently contained in this part can combine an image list into a single image. The input image
list is typically a jitter observation (observation technique commonly used in infrared to remove the strong
background) and the fuction shifts and adds the images together.

The functioncpl_geom_img_offset_combine()is very flexible, the offsets can be specified or not, they can be
refined or not with cross-correlation, the anchor point used for the cross-correlation can be specified or not,
sigma values can be specified if the function needs to find itself this anchor point, and the stacked image can be
the union or the intersection of the input images. The diagram in Figure 14 shows what the function does.

Shift−and−add
with refined offsets

by user
Offsets provided

Blind offsets
estimation

Anchor object for
cross−correlation provided

by user

Cross−correlation

Shift−and−add
with estimate offsets

by user
Offsets refining requested

detection
Anchor object

yes

no

yes

no

yes

no

failsucceed

succeed fail

fail

succeed

Figure 14:cpl_geom_img_offset_combine()behaviour

5.4.4 Photometry

This part currently contains a function (cpl_photom_fill_blackbody()) that computes the Planck black-body
radiance.

5.4.5 Nonlinear fitting

This part contains one high-level function for general nonlinear fitting.

1. Levenberg-Marquardt

The functioncpl_fit_lvmq()provides a LeVenberg-MarQuardt routine for fitting nonlinear one-dimensional
or multi-dimensional data.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 80 of 99

5.4.6 World Coordinate System

The World Coordinate System facility provided by CPL offers a way to create and manipulate the WCS de-
scriptions for a given image. At the heart ofcpl_wcsis Marc Calabretta’sWCSLIBpackage available from
(http://www.atnf.csiro.au/people/mcalabre/WCS/). The current implementation ofcpl_wcs
allows the user to

• load a WCS from a propertylist containing a valid FITS WCS description,

• do basic coordinate conversions

• use standard object positions to define an image WCS.

A typical use forcpl_wcswould be to work out the RA and Dec of an object given its physical coordinates on
an image. In the following fragment the Cartesian coordinates of two objects isgiven in the static double array
phys. The header of the original image is parsed into a propertylist and the WCS information is recovered from
it. The physical coordinates are wrapped in acpl_matrixstructure and passed to the conversion routine. Output
is anothercpl_matrixstructure with the world coordinates of the two objects. The FITS header ofthe input
image will determine the type of coordinates produced and the projection geometry used. Thus this conversion
routine could be used to produce any type of world coordinate that is supported by FITS.

#include <cpl.h>

...

static double phys[] = {382.252, 36.261,
18.097, 738.428};

int main()
{

...

char *filename;
const cpl_wcs *wcs;
const cpl_propertylist *plist;
cpl_matrix *from,*to;
cpl_array *status;

...

cpl_init(CPL_INIT_DEFAULT);

...

plist = cpl_propertylist_load(filename,1);
wcs = cpl_wcs_new_from_propertylist(plist);
from = cpl_matrix_wrap(2,2,phys);
cpl_wcs_convert(wcs,from,&to,&status,CPL_WCS_PHYS2WORLD);

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 81 of 99

...

cpl_matrix_unwrap(from);
cpl_matrix_delete(to);
cpl_array_delete(status);
cpl_propertylist_delete(plist);
cpl_wcs_delete(wcs);

...

cpl_end();

return 0;

}

Thecpl_wcs_convertroutine can do conversions between three types of coordinates:

physical A physical location of an object in pixel space.

world Space/time coordinates of an object in a given astronomical system.

standard An intermediate coordinate defined as an offset from the defined world coordinate system reference
point. This will be in the natural coordinate units for the WCS.

and currently supports several conversion modes:

CPL_WCS_PHYS2WORLD Physical coordinates are converted to world coordinates. The output coordinate
system depends entirely on the values defined in thecpl_wcsstructure and ultimately from the FITS
header from which it was derived.

CPL_WCS_WORLD2PHYS World coordinates are converted to physical coordinates. It is entirely up to the
user to ensure that the coordinates given are consistent with the WCS coordinate geometry that is provided
by the input FITS header.

CPL_WCS_WORLD2STD World coordinates are converted to standard coordinates.

CPL_WCS_PHYS2STD Physical coordinates are converted to standard coordinates.

The WCS facility also offers a routine to fit a two-dimensional WCS to a list of objects with known world
and physical coordinatescpl_wcs_platesol. The desired form of the WCS is defined by an input propertylist.
In most cases this would probably be parsed from the header of an inputFITS image, but in fact could also
be built from scratch by the user. A full explanation of the elements neededto define a WCS in FITS is way
beyond the scope of this manual and the reader is referred to the web pages of the FITS support office at
NASA/GSFC (http://fits.gsfc.nasa.gov/fits_wcs.html) and to the references therein. The
output propertylist contains the new FITS WCS description. It is worth noting that this routine will fit for offset,

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 82 of 99

scale and rotation, but will not fit any of the parameters for the projection geometry. These must be fixed in the
input WCS description.

Accessor functions are not included in thecpl_wcsAPI. Any modifications that the user wishes to make to a
WCS must be done to the input propertylist before it is parsed into thecpl_wcsstructure.

5.5 ESO/DFS specific routines inlibcpldfs

The functions contained in this library implement DFS specific requirements on keywords for pipeline products.
These functions are called by all pipelines, and insure these pipeline to have products that are compliant with
the last requirements.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 83 of 99

[1] Common pipeline library reference manual.

[2] P. Ballester. Data flow for vlt/vlti instruments – delivrables specification.2004.

[3] P. Grosbol P. Ballester, K. Banse. Data flow pipeline and quality control - users manual. 1999.

[4] Eso dicb – data interface control document. 1996.

[5] Recommended c style and coding standards.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 84 of 99

A The PDRM source code

This appendix provides the complete source of the PDRM example discussedin 3.5.

#include <cpl.h>

/* For the my_image_arithmetics prototype */

#include "my_image_arithmetics.h"

#define MY_PLUGIN_VERSION 1

/*
* Plugin detailed description

*/

static const char *
myplugin_help = "The plugin adds, subtracts, multiplies or divides "

"two images depending on the operation choosen by the "
"parameter ‘operation’.";

/*
* Forward declarations of the initalization, execute and

* cleanup handlers

*/

static int myplugin_create(cpl_plugin *);
static int myplugin_exec(cpl_plugin *);
static int myplugin_destroy(cpl_plugin *);

int
cpl_plugin_get_info(cpl_pluginlist *list)
{

cpl_recipe *recipe = cpl_calloc(1, sizeof *recipe);
cpl_plugin *plugin = (cpl_plugin *)recipe;

cpl_plugin_init(plugin,
CPL_PLUGIN_API,
MY_PLUGIN_VERSION,
CPL_PLUGIN_TYPE_RECIPE,
"myplugin",
"Do basic arithmetics on two images",
myplugin_help,
"Gill Bates",
"gbates@macrohard.com",

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 85 of 99

"GPL",
myplugin_create,
myplugin_exec,
myplugin_destroy);

cpl_pluginlist_append(list, plugin);

return 0;

}

static int
myplugin_create(cpl_plugin *plugin)
{

cpl_recipe *recipe = (cpl_recipe *)plugin;
cpl_parameter *p;

recipe->parameters = cpl_parameterlist_new();

p = cpl_parameter_enum_new("myplugin.operation",
CPL_TYPE_STRING,
"Arithmetic operation to apply.",
"myplugin",
"add", 4,
"add", "subtract", "multiply", "divide");

cpl_parameter_set_alias(p, CPL_PARAMETER_MODE_CLI, "op");
cpl_parameterlist_append(recipe->parameters, p);

return 0;

}

static int
myplugin_exec(cpl_plugin *plugin)
{

cpl_recipe *recipe = (cpl_recipe *)plugin;

return my_image_arithmetics(recipe->parameters, recipe->frames);

}

static int
myplugin_destroy(cpl_plugin *plugin)
{

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 86 of 99

cpl_recipe *recipe = (cpl_recipe *)plugin;

cpl_parameterlist_delete(recipe->parameters);

return 0;

}

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 87 of 99

B Comment conventions

Each file in the library begins with a header containing information about the file, such as the file version, the
file author, what is contained in the file, etc..

Here is a template of what is put at the head of each.c source file in the library:

/* $Id: conventions.tex,v 1.17 2003/12/15 16:03:06 dmckay Exp $

*
* This file is part of the ESO Common Pipeline Library

* Copyright (C) 2001-2003 European Southern Observatory

*
* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

*
* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*
* You should have received a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

/*
* $Author: dmckay $

* $Date: 2003/12/15 16:03:06 $

* $Revision: 1.17 $

* $Name: $

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include ...
#define ...

/**
* @defgroup <grouptag> <module name>

*
* [Module description]

*
*/

/**@{*/
/* The function code is placed here */
/**@}*/

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 88 of 99

Here is a template that should be filled and put at the head of each.h source file in the library:

/* $Id: conventions.tex,v 1.17 2003/12/15 16:03:06 dmckay Exp $

*
* This file is part of the ESO Common Pipeline Library

* Copyright (C) 2001-2003 European Southern Observatory

*
* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

*
* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*
* You should have received a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

/*
* $Author: dmckay $

* $Date: 2003/12/15 16:03:06 $

* $Revision: 1.17 $

* $Name: $

*/

#ifndef TEMPLATE_H
#define TEMPLATE_H

#include <cpl_macros.h>
#include ...
#define ...

CPL_BEGIN_DECLS
/* The function declarations are placed here */
CPL_END_DECLS

#endif /* TEMPLATE_H */

The fieldsId, Author, DateandRevisionare automatically filled by the configuration control systemCVS.

The functions are themselves documented using the following template that has tobe filled and put just before
the function:

/*---*/
/**

@brief

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 89 of 99

@param
@param
@return

*/
/*---*/

Online documentation may then be generated usingdoxygen.

The functions must be documented in the.c file. Function documentation must contain information about the
function interface (how to call it, what to expect, where to use it, ...) and information about how the function
has been written (algorithm used, has it been optimised, ...).

As an example, here is a very simple.h file, which illustrates the conventions described above.

/* $Id: cpl_image_io.h,v 1.48 2005/02/16 17:56:33 yjung Exp $

*
* This file is part of the ESO Common Pipeline Library

* Copyright (C) 2001-2004 European Southern Observatory

*
* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

*
* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*
* You should have received a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

/*
* $Author: yjung $

* $Date: 2005/02/16 17:56:33 $

* $Revision: 1.48 $

* $Name: $

*/

#ifndef CPL_IMAGE_IO_H
#define CPL_IMAGE_IO_H

/*---
New types

---*/

typedef struct _cpl_image_ cpl_image;

/*---

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 90 of 99

Includes
---*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <limits.h>

#include "cpl_io.h"
#include "cpl_propertylist.h"
#include "cpl_mask.h"

CPL_BEGIN_DECLS

/*---
Define

---*/

#define CPL_PIXEL_MAXVAL (double)(LONG_MAX)
#define CPL_PIXEL_MINVAL (double)(LONG_MIN)

/*---
Function prototypes

---*/

/* Image constructors */
cpl_image * cpl_image_new(int, int, cpl_type);
cpl_image * cpl_image_wrap_double(int, int, const double *) ;
cpl_image * cpl_image_wrap_float(int, int, const float *) ;
cpl_image * cpl_image_wrap_int(int, int, const int *) ;
cpl_image * cpl_image_load(const char *, const cpl_type, const int, const int) ;
cpl_image * cpl_image_new_from_mask(const cpl_mask *) ;

...

CPL_END_DECLS

#endif
/* end of cpl_image_io.h */

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 91 of 99

C Naming conventions

The naming conventions are described in section 4.7.

Qualifiers The following words are permitted as qualifiers inget/set operations:

• absflux

• alias

• api

• author

• bool

• bottom

• centroid

• char

• class

• code

• coeff

• column

• comment

• component

• context

• copyright

• cputime

• data

• default

• degree

• deinit

• description

• determinant

• dimension

• domain

• double

• email

• enum

• exec

• file

• filename

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 92 of 99

• first

• float

• flux

• format

• frame

• function

• fwhm

• group

• help

• id

• indentation

• info

• init

• int

• interpolated

• invalid

• keyword

• last

• left

• level

• line

• log

• long

• macro

• max

• maxpos

• mean

• median

• message

• min

• minpos

• name

• ncol

• next

• nextensions

• noise

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 93 of 99

• npix

• nrow

• range

• right

• size

• sizeof

• sqflux

• stdev

• string

• synopsis

• tag

• time

• top

• type

• unit

• version

• where

• width

• x

• y

The following words are permitted as qualifiers for other operations:

• 1d

• 2d

• after

• all

• array

• blackbody

• bool

• but

• by

• char

• coarse

• column

• columns

• combine

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 94 of 99

• context

• create

• data

• diagonal

• double

• echelon

• empty

• enabled

• enum

• fine

• fits

• float

• forward

• frame

• frameset

• from

• gaussian

• identity

• image

• int

• invalid

• kernel

• less

• linear

• log

• long

• lowpass

• mask

• median

• more

• morpho

• noise

• normal

• overwritable

• polynomial

• power

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 95 of 99

• product

• property

• range

• regexp

• rejected

• row

• rowcolumn

• rows

• saa

• scalar

• segment

• selected

• sigma

• small

• stdev

• string

• structure

• subsample

• tag

• tags

• test

• to

• type

• valid

• value

• vectors

• window

• zero

Items The following words are permitted as items:

• accepted

• bool

• char

• create

• data

• dev

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 96 of 99

• double

• flag

• float

• flux

• format

• header

• image

• int

• invalid

• level

• long

• macro

• mask

• max

• maxpos

• mean

• median

• min

• minpos

• name

• npix

• of

• off

• on

• profile

• regexp

• rejected

• ring

• rows

• size

• stdev

• string

• strings

• type

• uniform

• unit

• window

• x

• y

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 97 of 99

D Function renaming and API changes from CPL 4.0 to CPL 5.0

In the fifth major release of theCommon Pipeline Librarya number of API changes and function renaming
needed to be carried out.

In order to facilitate the adaptation of applications based on CPL 4.0 to CPL 5.0,the necessary modifications
and the available extensions are described below.

D.1 New functions in CPL 5.0

cpl_image_filter()
cpl_image_filter_mask()
cpl_fits_count_extensions()
cpl_fits_find_extension()
cpl_array_get_max()
cpl_array_get_min()
cpl_array_get_maxpos()
cpl_array_get_minpos()
cpl_array_get_mean()
cpl_array_get_median()
cpl_array_get_stdev()
cpl_array_extract()
cpl_array_insert_window()
cpl_array_erase_window()
cpl_array_insert()
cpl_array_add()
cpl_array_subtract()
cpl_array_multiply()
cpl_array_divide()
cpl_array_add_scalar()
cpl_array_subtract_scalar()
cpl_array_multiply_scalar()
cpl_array_divide_scalar()
cpl_array_set_size()
cpl_image_rebin()
cpl_image_fill_jacobian()
cpl_image_fill_jacobian_polynomial()
cpl_array_power()
cpl_array_abs()
cpl_array_logarithm()
cpl_array_exponential()
cpl_table_where_selected()
cpl_table_set_column_savetype()

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 98 of 99

D.2 API changes in CPL 5.0

cpl_dfs_save_image() The PROCATG string parameter is replaced by a newcpl_propertylist
parameter, which must contain at least onecpl_property of type string, with keyCPL_DFS_PRO_CATG.
An additionalcpl_propertylist parameter is added, aNULL-value yields the result of the previous
version.

cpl_dfs_save_table() Seecpl_dfs_save_image() above.

cpl_dfs_save_propertylist() Seecpl_dfs_save_image() above.

cpl_dfs_save_imagelist() Seecpl_dfs_save_image() above.

cpl_dfs_setup_product_header() A string parameter is appended, aNULL-value yields the result of
the previous version.

cpl_geom_img_offset_saa() Two double-pointer parameters are appended,NULL-values yield the re-
sult of the previous version.

cpl_propertylist_erase_regexp() The return value in case of error has changed and is now -1
instead of 0.

cpl_image_get_bpm_const() If the image has no bad pixel map, thenNULL is returned, instead of
creating one thus modifying the const image. (If the input image is guaranteedto already have a bad pixel
map, then no change is needed. Otherwise the call should be replaced withcpl_image_get_bpm().

cpl_polynomial_shift_1d() An integer parameter has been added, a0-value yields the result of the
previous version.

cpl_imagelist_collapse_sigclip_create() Four new parameters have been added. They will
be used in a future CPL release and are currently ignored.

D.3 Other API changes in CPL 5.0

cpl_fits_get_nb_extensions() Deprecated, usecpl_fits_count_extensions() instead.

cpl_fits_get_extension_nb() Deprecated, usecpl_fits_find_extension() instead.

cpl_image_filter_linear() Deprecated, usecpl_image_filter() instead.

cpl_image_filter_morpho() Deprecated, usecpl_image_filter() instead.

cpl_image_filter_median() Deprecated, usecpl_image_filter_mask() instead.

cpl_image_filter_stdev() Deprecated, usecpl_image_filter_mask() instead.

cpl_apertures_new() Removed.

cpl_image_extract_subsample() Now supports different stepsizes in x and y.

cpl_mask_extract_subsample() Now supports different stepsizes in x and y.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 5.0.0
Date: Date 2009–04–28
Page: 99 of 99

— End of document —

